

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	xylem 0.1.0 documentation

xylem

xylem is a package manager abstraction tool.
It can be used to install dependencies on any supported platform.

For example, if you want to install boost on your machine you would
simply run xylem install boost. This command would cause xylem
to determine your OS and OS Version, look up the corresponding package
managers for that OS, OS Version tuple, look up the appropriate value
for boost for that OS pair, and finally invoke the package manager
to install boost, e.g. for Ubuntu that might be sudo apt-get install
libboost-all-dev.

This tool allows you to generalize your installation instructions and
define your software package’s dependencies once. xylem also has an
API which can be used to automate installation of resources, like for
automated tests or for simplified installation scripts.

Contents:

	xylem‘s Design Overview
	Motivation

	Goals

	Supported platforms

	Plugins

	Improvements over rosdep

	Terminology

	xylem Rules
	xylem Rules File Specification

	Examples

	xylem Python API
	Database

	Indices and tables

	xylem package
	Subpackages

	Submodules

	xylem.log_utils module

	xylem.terminal_color module

	xylem.update module

	xylem.util module

	Module contents

Installing from Source

Given that you have a copy of the source code, you can install xylem
like this:

$ python setup.py install

Note

If you are installing to a system Python you may need to use
sudo.

If you do not want to install xylem into your system Python, or you
don’t have access to sudo, then you can use a virtualenv [https://virtualenv.pypa.io/].

Hacking

Because xylem uses setuptools [http://pythonhosted.org/setuptools/] you can (and should) use the
develop [http://pythonhosted.org/setuptools/setuptools.html#development-mode] feature:

$ python setup.py develop

Note

If you are developing against the system Python, you may need
sudo.

This will “install” xylem to your Python path, but rather than
copying the source files, it will instead place a marker file in the
PYTHONPATH redirecting Python to your source directory. This allows
you to use it as if it were installed but where changes to the source
code take immediate affect.

When you are done with develop mode you can (and should) undo it like
this:

$ python setup.py develop -u

Note

If you are developing against the system Python, you may need
sudo.

That will “uninstall” the hooks into the PYTHONPATH which point to
your source directory, but you should be wary that sometimes console
scripts do not get removed from the bin folder.

Code Style

The source code of xylem aims to follow the Python style guide [http://docs.python-guide.org/en/latest/writing/style] and the
PEP 8 [http://www.python.org/dev/peps/pep-0008] guidelines. In particular a line width of 79 characters is
enforced for python code, while multiline comments or docstrings as well
as text files should use a line width of 72.

The test-suite checks that all xylem code passes the flake8. On top
of that identifer names should follow the rules layed out in PEP 8
 [http://www.python.org/dev/peps/pep-0008#naming-conventions] and docstrings should adhere to PEP 257 [http://www.python.org/dev/peps/pep-0257], however
these are not automatically checked.

The most important rules are readability and consistency and use of
common sense.

Testing

In order to run the tests you will need to install nosetests [https://nose.readthedocs.org/] and flake8 [https://flake8.readthedocs.org/].

Once you have installed those, then run nosetest in the root of the
xylem source directory:

$ nosetests

Building the Documentation

In order to build the docs you will need to first install Sphinx [http://sphinx-doc.org/]. We use the Read the Docs Sphinx Theme [https://github.com/snide/sphinx_rtd_theme], which you can install
with:

$ sudo pip install sphinx_rtd_theme

You can build the documentation by invoking the Sphinx provided make
target in the docs folder:

$ # In the docs folder
$ make html
$ open _build/html/index.html

Sometimes Sphinx does not pickup on changes to modules in packages which
utilize the __all__ mechanism, so on repeat builds you may need to
clean the docs first:

$ # In the docs folder
$ make clean
$ make html
$ open _build/html/index.html

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

xylem‘s Design Overview

Motivation

What is the motivation for developing xylem as a new tool as opposed
to updating rosdep?

rosdep was originally designed for use with rosbuild and both
code and command line interface are structured for that purpose. The
notion of stacks, packages and manifests where where rosdep keys
were defined at a stack level is deeply baked into the design. Later
adaptations to work with catkin were bolted on to that design in a
suboptimal way and in became increasingly hard to extend rosdep with
new features. Thus, rosdep has a lot of unused or overly
complicated code.

Moreover, rosdep is currently linked tightly to several other ROS
tools like bloom, such that even minor changes in rosdep can
have deep ramifications in the tool chain. Due to this fragility,
releases are slow and infrequent. Moreover, rosdep is not modular
enough to facilitate extensions through third-party python packages.
Together, all this implies that it is extremely difficult to improve
rosdep, implement new features, and get them released.

Therefore it was concluded that it be more efficient to start fresh,
borrowing ideas and code from rosdep, but designing it the way it
should be rather than the way it used to be. Hence, xylem was born.

Goals

xylem is supposed to supersede rosdep as a package manager
abstraction tool that can be used to install dependencies on any
supported platform in a uniform manner. In particular, the goals of
xylem are the following.

Separation of concerns

xylem addresses one of the key shortcomings of rosdep, namely
its tight coupling with other ROS tools, with a modular design that
considers the following building blocks.

	A core library that provides the infrastructure to read in rule
files, resolve keys depending on the user platform and invokes package
managers to install the desired software.

	A set of plugins that provide specific functionality:
	operating system support (e.g. Ubuntu, OS X,
cygwin)

	backend installers, i.e. package managers
(e.g. APT, PIP, Homebrew)

	frontend input of keys (e.g. directly from the
command line or by parsing a directory of ROS packages)

	sources of rules (e.g. rules files or released
ROS packages from rosdistro)

	command verbs (e.g. xylem install, xylem
update)

xylem comes with default plugins for all of the above points of
extension.

Extensibility

Plugins should be able to extend the core tool from within other Python
packages, such that extensions can be made without the need to touch the
core package. This allows extensions to be developed and distributed
somewhat independently of xylem releases. General purpose plugins
that have proven to be useful to a range of users should be considered
for inclusion into the core library.

Independence from ROS

One aim with designing xylem in a modular and extensible way is
allowing it to be completely independent from ROS. In particular the
core library should not have any ROS specific special cases or
assumptions. Any functionality that is specific to ROS should be
implemented as plugins, and possibly distributed as a separate package
xylem-ros.

The ways in which rosdep is currently tied to ROS are:

	Frontend input, for example by scanning a directory for ROS packages
and checking / installing their dependencies.

	Extracting resolution rules from rosdistro information.

	API access from tools like catkin or bloom.

	Use of other ROS specific packages, e.g. rospkg.os_detect.

Replace rosdep

One aim for xylem together with its ROS specific plugins is to
provide a full future replacement for rosdep. This entails providing
command line tools to check and install dependencies of ROS packages as
well as providing an appropriate python API that allows tools such as
catkin or bloom to query xylem for dependency information. We do
not aim at backward compatibility at the CLI or API level, but at the
level of provided features.

In particular, this also means that the keys currently specified in
package.xml files of ROS packages should continue to work with xylem
(for non-EOL distributions at the very least).

Full backward compatibility in particular to EOL tools such as
rosbuild does not have to be achieved.

Consider improvements

The design of xylem should consider the know limitations of
rosdep and improve beyond the functionality of rosdep. While
proposed enhancements possibly are not implemented right away, it should
be ensured that future extensions allow their realization without the
need to break backwards-compatibility or for heavy redesign.

The following list of exemplar improvements is not necessarily
exhaustive, nor definitive. More details on some of these ideas can be
found further blow.

	improve rule files
	smaller backwards-compatible changes, mostly syntactic sugar for
less repetition for different platforms (any_version,
any_os)

	support versions in rules files, e.g. parsed from package.xml
files [details]

	support different types of dependencies such as test dependencies

	support package managers with options (such as formula options on
homebrew, use flags on gentoo?)

	consider precedence of conflicting rules [details]

	inter-key dependencies [details]

	support package manager sources (e.g. PPAs for APT on Ubuntu)
[details]

	support package manager prerequisites (such as PM is installed, PM
cache is up-to-date, correct PPA is installed) [details]

	support multiple resolution alternatives on the same platform with
sensible defaults as well as user-configurable arbitration between
them (e.g. macports vs homebrew, apt vs pip) [details <Alternative
resolutions_>_]

	configure source/cache location and supply working cache with
installation [details]

	configure package manager plugins from config/cli (e.g. whether to use
sudo or not, supply additional command line arguments) [details]

	support concurrent invocations of xylem, in particular the
update verb for tools such as bloom running in parallel.
[details]

	support automatic cache updates (integrate update with native package
manager, cronjob, ...)

	support virtual packages and/or A OR B logic

	support proxies

	support derivative operating systems (e.g. use Ubuntu rules on Ubuntu
derivatives if no specific rules are available)

	warn users when xylem is out of date [details]

	version the rules database and force update on version changes

	improve situation on Windows

Anti-Goals

xylem does not aim to replace package managers or package software
itself. While support for package-manager-less platforms can be achieved
with backend plugins such as the source installer, it is not an
objective of xylem to systematically maintain such installation scripts.

Supported platforms

xylem aims to support at least the following platforms (which is
what rosdep currently supports) with their native package managers

	arch (pacman)

	windows/cygwin (apt-cyg)

	debian (apt)

	freebsd (pkg_add)

	gentoo (portage)

	opensuse (zypper)

	osx (homebrew, macports)

	redhat (yum)

as well as the following language-specific cross-platform packages
managers

	ruby (gem)

	python (pip)

and a platform independent source installer:

	source

On the wish list is better support for Windows, but it is unclear how
this could be achieved.

Plugins

In order to be modular and extensible by independent Python packages,
xylem uses the Entry Points [http://stackoverflow.com/questions/774824/explain-python-entry-points] concept of setuptools. The
following discusses the pluggable parts of xylem laid out above in more detail.

OS support

Operating system support includes:

	detecting OS name, version, codename (currently in rospkg.os_detect)

	register installers, default installer, installer order of preference
etc with installer context (rosdep2.installers.InstallerContext)

Notes:

	Should OS support be plugin at all?

	Should are OS settings like registered installers and installer order
of preference always per-OS as is in rosdep, or do we possibly
need optional per-version distinction for these?

	What is relation between OS support plugins and installer plugins?
Should OS plugin register all supported installers? Should installer
plugin be able to register themselves for specific or all platforms?

	consider the distinction version_type vs codename_type

	support overriding detected OS from settings/cli

Backend installers

The supported installers are defined as plugins such that support for
new installers can be added by external Python packages. Installers
typically represent support for a specific package manager like APT, but
not necessarily, as is the case for the source installer. The minimal
functionality an installer needs to provide is:

	check if specific packages are installed

	install packages

Additional functionality is optional (these are ideas):

	support uninstall
	e.g. source installer does not support this

	support native reinstall
	is using the pm’s native reinstall command as opposed to
uninstall+install ever needed?

	support to attempt install without dependencies
	this would be needed for a specified-only option to the
install command.

	not sure if we need this at all.

	support package versions
	check which version of package is installed

	check if installed package is outdated

	upgrade installed package to latest version

	install specific version of package

	support cache update
	check if package manager cache is outdated

	update cache (like apt-get update) or provide instructions for
user how to update pm

	support options
	some package managers additional options supplied when installing a
package (homebrew, gentoo (use flags)?)

	pass correct options to installer

	check if options for installed package satisfy the requested options
(e.g. they are superset)

	native dependencies
	list all package manager dependencies of specific packages

	the idea is that we let the package manager install the dependencies
and only issue the install command for the necessary leafs

	do we need this?

Notes:

	how is support for optional features formalized in the code?

	if new package managers can be added as plugins, then they need to be
able to register themselves for specific or all operating systems

Frontend input

It needs to be possible to extend the way the user passes keys to be
resolved to xylem. The basic usage would be directly passing a list
of keys on the command line or API function. Another input would be
parsing of ROS packages and checking the package.xml files. Another
one would be a new file format .xylem, which allows non ROS packages
to specify dependencies for convenient installation.

Notes:

	I’m not sure how exactly this would look.

	Implementing these as new command verbs gives ultimate flexibility,
but on the other hand it makes much more sense if the standard
commands like install or check can be extended. E.g. ROS
support plugins for xylem should be able to provide an option like
--from-path for the install verb.

	For compatibility of different frontends there are the following
ideas:
	Either the desired frontend has to be specified at the command line,
e.g. xylem install --frontend=ros desktop_full
--rosdistro=hydro, xylem install --ros --from-path src,

	or the frontends register command line options that are unique, e.g.
xylem install --rospkg desktop_full, xylem install --ros-from-
path .,

	or xylem can work some magic to find out which frontend the user
desires, i.e. it determines if the input from the positional command
line arguments consists of keys, directories, or ROS-packages. For
directories is checks if they contain ROS packages with
package.xml files or .xylem files. There is an order on
which frontend takes precedence, which can be overwritten by
explicitly specifying the frontend. This last alternative might make
for the best just works user experience, but needs to be carefully
thought through in order to not appear confusing.

Rules sources

The rosdep model for the definition of rules is configured in source
files (e.g. 20-default-sources.yaml) that contain the URLs of rules
files (base.yaml). Multiple source files are considered in their
alphabetical order. Having multiple files allows robot vendors to ship
their own source files independently of the xylem base install.
Possibly, rules plugins could also make use of this by shipping with
additional default sources files. Initially, xylem will be using the
same format, with some backwards- compatible (and already implemented)
changes to the rules file format (any_os, any_version). Plugins
can define new types of sources for rules. Right now we can foresee the
following cases that might come as new source plugins:

	New rules file format that is not compatible with the existing format.
	This would work in a very similar fashion to the initial plugin.

	Rules derived from rosdistro.
	This is somewhat different, since it’s sources are not specified by
URLs but rather implicit using the rosdistro package.

Notes:

	Do we only support the cache model for sources, where a static rules
database is built with the update command, but no new information
is generated upon key resolution? This implies that rules sources that
query some other database format (rosdistro?) or online sources at
resolution time are not possible. In particular the rosdistro
plugin would generate a list of rules for all released packages upon
update (and not on-demand upon key resolution).

	What do the rules plugins return? The parsed rules from a given file
in a (clearly defined) rules database format (something like the
current dict database)? In any case the returned data should be in
some versioned format, to allow future extensions to that format. This
is probably the same format in which xylem keeps cached the
database.

	Should we consider allowing for the possibility of loading parsed (and
pickled) rules databases with the update command (for increased
speed of update)? Here the original rules files would always be
specified, but a binary version can be additionally added (somewhat
like in homebrew all formula need to specify the source to build them,
but some can additionally provide the binary package as a bottle).

	When are the different rules sourced merged (including arbitration of
precedence)? During update, or while loading the cache database for
resolution? Do we keep all possible resolutions in the database, or
only the one that takes highest precedence?

	How is order of precedence defined between different rules plugins?
Only by the order of the rules files? Do platform support plugins play
a role in defining the precedence of different installers on a per-OS
or per-version basis? Can user settings influence the order of
precedence?

	Should the .list files be able to reference sources from multiple
rules source plugins within the same file (which would also allow to
control precedence if the entries are ordered within the file)?

One can imagine a source files to look like this (not sure if this is
correct YAML, but the idea should be clear):

Overriding rules with highest precedence, but with legacy format
- format: rules
 sources:
 - 'some/special/rules.yaml'
Latest rules in new format
- format: rules2
 sources:
 - 'latest/rules/using/new/rules/format/base.yaml'
Existing rules in legacy format
- format: rules
 sources:
 - 'https://github.com/ros/rosdistro/raw/master/rosdep/base.yaml'
 - 'https://github.com/ros/rosdistro/raw/master/rosdep/python.yaml'
 - 'https://github.com/ros/rosdistro/raw/master/rosdep/ruby.yaml'
this entry for the rosdistro rules plugin has no URLs, but is
 present to mark it as least-precedent
- format: rosdistro

	Do we support rules plugins that do not have an entry in any sources
file (like rosdistro), or do we force all plugins to have at least
an empty entry (example file above) in order to be ‘activated’ upon
update.

	Should rules plugins include an abstraction to tell if the database is
out of date (for a specific URL)? Something like comparing the last-
changed timestamp of the cached databased with the last-changed
timestamp of the online rules file. This might be used to speed up
update and also to determine whether to remind the user to call
update.

Commands

The top level command verbs to the xylem executable should be
plugins. These can pretty much define any new functionality. It is not
quite clear how exactly other plugins can interact with commands, e.g.
frontend plugins should somehow be able to extend the install verb.

These are the core commands:

	update to update the rules database

	If partial updates are supported, where only outdated rules files
are pulled, there should be an option to force updating everything.

	Needs to make sure to remove stale database cache files even on
partial update, which are no longer referenced from the source
files. Possibly add a clean command, that wipes the cache
completely.

	install to install packages

	options: --reinstalll, --simulate, --skip-keys,
--default-yes, --continue-on-error, --specified-only
(would this mean to not resolve dependencies on xylem level, or also
stop possible dependency resolution of package manager, if that is
even possible)

	check to check if packages installed

	options: --skip-keys, --continue-on-error, --specified-
only

	init to initialize config file and sources.list.d (possibly in
custom location according to XYLEM_PREFIX). By default the built-
in default sources / config is copied to the new location. Is a no-op
with warning if sources / config is present.

options:

	--from-prefix to copy the config/sources that would be used with
this given prefix

	--from-system to copy the config/sources that would be used with
empty prefix

	--force to clear the config/sources even if they are present

These commands for dependency resolution could be useful:

	depends (options: --depth where 0 means no limit)

	depends-on (options: --depth where 0 means no limit)

There should also be some commands for checking how a key resolves on a
specific operating system, possibly listing alternative resolutions (pip
vs apt) highlighting the one that would be chosen with install. It
should also be possible to determine where these resolutions come from,
e.g. which source files.

	resolve

	where-defined

Notes:

	we might want to steal the alias mechanism from catkin_tools, but
that is maybe low priority, since xylem command invocations would
be much less frequent than catkin build invocations.

Improvements over rosdep

In the following we elaborate on some of the concrete improvements over
rosdep listed above. Some of them are
far future, some should be implemented right away.

Sources and cache location

The xylem model of a lookup database cache that is updated with and
update command is somewhat analogous to apt-get. By default a
system-wide cache is maintained that needs to be updated with sudo.
We assume that many developer machines are single-user and/or are
maintained by an admin that ensures regular update invocations (e.g.
cronjob).

On top of the general scenario the following specific use-cases need to
be supported with regards to the database cache:

	xylem needs to allow users to maintain their own cache in their
home folder and use xylem independent from the system-wide
installation and without super user privileges.

	Robot vendors need to be able to add to the default sources
independently from the core xylem install and without post-
installation work.

	xylem needs to be functional out of the box after installation.
update requires internet connectivity, which is not given in some
lab/robot environments. Therefore we need to make sure that xylem
can be packaged (e.g. as debian) with a pre-generated binary cache.
This needs to be possible for the default sources bundled with
xylem as well as vendor supplied additional source files.

	Tools like bloom need to be able to create temporary caches
independent from the system wide install and without super-user
privileges.

We propose the following solution:

	Firstly, we assume that each URL/entry in the source files has it’s
own binary database cache file, all of which get merged upon lookup.

	The user can specify the XYLEM_PREFIX environment variable
(overwritten by a command line option, maybe --config-prefix or
-c). By default an empty prefix is assumed.

	The cache will live in <prefix>/var/cache/xylem and the sources in
<prefix>/etc/xylem/sources.d/

	A xylem installation comes bundled with default source files and
default cache files. However, in particular the cache is not installed
into the /var/cache location directly.

	The init command installs the default sources and default cache
into the corresponding locations. There are command line options to
copy existing sources/cache from another prefix, but by default the
built-in files are used. The source files are only installed if they
are not present. The cache files are only installed, if the
corresponding source file was either not present, or was present and
identical to the default. Existing cache files are not overwritten.
There is a flag (maybe --force), that causes it to overwrite the
default files (sources and cache). Additional source files/cache files
are not overwritten.

	init is called as part of the post-installation work at least for
debians, maybe also pip? Note that this does not require internet
connection and sets up a working config and cache.

	The default source files could be handled as conffiles [http://raphaelhertzog.com/2010/09/21/debian-conffile-configuration-file-managed-by-dpkg/] in the debians, such that they are updated
upon apt-get upgrade, where the user is queried what should happen
if he has changed the default sources.

	update does not automatically use the the built-in sources if none
exist under the given prefix. However, if the default source files do
not exist, it warns the user and possibly tells him to call xylem
init (or even offers to call it). This warning can be disabled in
the settings for users that want to explicitly delete the default
config files.

	Robot vendors that want to supply additional default sources can hook
into init (with an entry point) and register their additional
default sources as well as binary caches. All the above mechanisms
work for those vendors. For example, if the additional vendor package
gets installed, a subsequent post-install init does recognize the
missing caches for installed default sources and installs them to
ensure out-of-the-box operation. Likewise, calling update in a
custom prefix after installing an additional vendor package will warn
the user, that some of the default sources are not installed and urge
her to call init, which will add these additional default sources
(and cache files), while not touching the existing default source
files from the core library.

For rosdep, there is pull request [https://github.com/ros-infrastructure/rosdep/pull/312] for a slightly different solution.
However, what we suggest addresses some of the remaining issues:

	(re-)installing from debs does not overwrite existing cache files.

	python2 and python3 debians can be installed side-by-side (at least if
the default source files are not handled as conffiles)

Notes:

	Should it be sources.list.d or sources.d? Note that we
probably change the source files from .list to .yaml, so does
sources.list.d still make sense?

	Can we ensure that the binary (pickled) database format is compatible
between python2 and python3?

	If the default files have been updated, and the user updates the xylem
installation, init will not change the existing default sources. Do we
need to / can we detect if they are unchanged and replace them
automatically if they are unchanged? If they are changed, ask the user
what to do (like debian conffile).

	Do the API calls respect the XYLEM_PREFIX environment variable or
need explicit setting of a prefix parameter? I think the latter.

	It was mentioned that the debian install needs to work out-of-the-box
“without any post-installation work”. Why exactly? Is post-install
work (like calling init) ok if it does not require internet
connectivity?

	Maybe the system wide settings file is also affected by
XYLEM_PREFIX, i.e. lives in <prefix>/etc/xylem/config?

Settings and command line arguments

There should be a canonical way to supply arguments to xylem. We
propose a system config file, a user config file and command line
options. The order of precedence of arguments specified multiple times
is:

command line > user > system

We use yaml syntax for the configuration files, and suggest the
following locations:

	system: <prefix>/etc/xylem/config.yaml

	user: $HOME/.xylem.yaml

In general all options should be supported both by the CLI and the
config files (where it makes sense). One exception is the environment
variable XYLEM_PREFIX, because this configures the location of the
system-wide config file in the first place.

Command line arguments can be grouped in the following way:

	global command line arguments applicable to all commands such as
disable-plugins or os

	command specific command line arguments

	In order to achieve a good user experience, the command specific
options should be further grouped. For example, all commands that take
a list of keys as arguments, should do so in the same way, e.g.
offering skip-keys)

It has to be seen if and how either or both kinds of arguments can be
injected by plugins (e.g. frontend plugins inject new arguments to all
commands that take a list of keys as input).

In particular it needs to be possible to supply arguments to the backend
installer plugins (e.g. as-root or additional-arguments, see
rosdep#307 [https://github.com/ros-infrastructure/rosdep/pull/307#issuecomment-36572637]). yaml
format gives a lot of flexibility, but there should also be some
conventions (not necessarily enforced) to ensure that the plugins name
their options in a uniform way, such that it may even be possible and
reasonable to pass certain options to all installer plugins.

Notes:

	Should user file be in $HOME/.config/xylem.yaml, or even
$HOME/.config/xylem/config.yaml (see stackexchange.com [http://unix.stackexchange.com/questions/68721/where-should-user-configuration-files-go])? What about config locations on Windows?

Inter-key dependencies in rules files

In general, we rely on the backend package manager to install
dependencies for resolved keys. Dependencies between keys in rules files
is at the moment only used for the interplay between homebrew and pip on
OS X it seems. Should this be a general feature for rules to depend on
other keys? In particular if we reactivate the source installer this
would be needed. In particular when considering adding versions to the
rules files, doing dependency resolution right is not quite trivial I
guess.

Dependencies on other keys might be reasonable on different levels.
Currently they are part of the installer section, but maybe they could
be defined also at the rule level.

Notify user about outdated database

Ideally, if the source plugins can tell when they are outdated, we would
fork a process on every invocation to check if database is out of date
and inform the user that an update would be good on the next run. Maybe
limit the update check to only fire if the database has not been updated
for a certain amount of time (a day, a week, could be customizable).

Versions in rules files

In general the user should expect a command xylem install boost to
install the latest version of boost on the given system, i.e. on
Ubuntu the version that apt-get install boost would install. For
some package managers, like apt for a specific Ubuntu release, this
might be always the same version of boost, for other package managers
such as pip or homebrew, this will always refer to the latest version.
This gives rise to two challenges with respect to software versions.
Firstly, at any given time the key boost refers to different
versions of the boost library on different platforms. Secondly, at two
different points in time the key boost refers to two different
versions of the boost library on the same platform. These challenges
need to be taken into consideration, since the goal of xylem is to
allow specification of dependencies in a uniform way that is robust over
time, i.e. can be supplied as part of install instructions today and
still be valid tomorrow.

At the moment, rosdep does not really consider versions, which users
find confusing in particular in conjunction with ROS packages that may
specify versioned dependencies (rosdep#325 [https://github.com/ros-infrastructure/rosdep/issues/325]).

In general we assume that package managers can only install one version
of a specific package at a time (largely true for apt, homebrew, pip).
We also assume that we never install a specific version of a package
with the package manager, but only the latest version, or possibly
upgrade an already installed package to the latest version.
Nevertheless, the package manager should be able to tell us, which
version of a package is installed and which version would be
installed/upgraded (i.e. the latest version on that platform).

For some libraries multiple incompatible major versions need to be
present at the same time. Here xylem follows suite with package
managers such as apt and homebrew and introduces new keys for the
specific versions (as rosdep does currently). For example, for Eigen
there are the version specific eigen2 and eigen3 keys, as well
as a general eigen key that points to the latest version (i.e. is
currently the same as eigen3).

What could be considered, is that xylem allows for input keys to be
associated with version requirements (==, <=, >= etc) and then check, if
the installed or would-be installed version matches. This would solve
the use case with ROS packages above, where there is a one-to-one
relation between xylem key and apt package. However, it is unclear how
the version is handled if a key resolves to 0 or more than 1 packages.
However, the most we would offer in terms of action is upgrading an
already installed package to the latest version, and informing the user
if a matching version cannot be achieved by upgrading or if the version
requirements are incompatible themselves (i.e. user installs foo and
bar, which depend on baz>1.0 and baz<1.0 respectively). Special care
needs to be taken to correctly merge multiple versioned resolutions of
the same key.

Another level of support for versions in rules would be to allow the
resolution rules themselves to be conditional on a version, e.g.
allowing to specify that eigen would resolve to libeigen2-dev or
libeigen3-dev, depending on the version. With this, the versioned
key eigen==2 and eigen==3 could be resolved at the same time.
Things could get really complicated and I’m not sure we want to go down
that route unless there is a good concrete use case where this is
beneficial.

Notes:

	check how package managers deal with versions, in particular the
capabilities (install multiple version of same package, install
specific version of package not only latest) and syntax for versioned
dependencies
	apt

	homebrew

	pip: https://pip.pypa.io/en/latest/user_guide.html#requirements-files, http://pythonhosted.org/setuptools/setuptools.html#declaring-dependencies

	interesting blog about abstract vs concrete dependencies in python
https://caremad.io/blog/setup-vs-requirement/

Improved package manager abstraction

[TODO: these are only random thoughts. transform them into a coherent
and comprehensible description]

	support stuff like custom ppa’s for apt, taps for homebrew

	the ros-ppa should not be special in xylem

	possibly specified on a per-rules-file basis? (identify real world use
cases / needs)

	if custom ppa’s are supported, provide tools to list the ppa’s for
bunch of keys / rules sources

	rules should never specify the ppa location, but rather have some sort
of names prerequisite. this way the user could configure/overwrite the
prerequisite in the config file if he e.g. has a customized mirror of
that ppa or tap.

	issue of trust for the user (auto add alternavte pm sources? query
user?)

	issue of reliability of sources for the maintainer
	tool support to ensure ROS core packages are only using ubuntu or
osrf ppa?

	maybe the right abstraction is package manager prerequisites
	possibly not support undoing these prerequisites

	prerequisites should be performed before any packages is installed

	could query user or be automatic (with explicit option) or fail with
instructions to user

	allow user to configure and also skip specific or all prerequisite
checks.

	special prerequisite is the ‘availability’, which checks if the pm
is installed. This should be treated specially, because maybe the
selection of used package manager should depend on which is
installed (e.g. macports vs homebrew). Ability to list available
package managers

	maybe with the previous it makes sense to distinguish general
prerequisites (apt is installed and possibly up-to-date) and per-key
prerequisites (certain ppa is installed)

	concrete examples:
* apt: ppa installed
* source installer: tools installed (gcc etc)
* brew: homebrew installed, Tap tapped
* pip: pip installed

Alternative resolutions

Allow for alternatives with resolutions on a specific platforms, e.g.
the use can choose macports vs homebrew on OS X, or to use pip over apt
for python packages on Ubuntu.

Notes:

	multiple resolutions for one key on a specific os/version

	how to do the right thing by default? (e.g. detect if either homebrew
or macports is installed to determine the default. Maybe some people
never want to fallback to macports, maybe some want to fall back to
macports if a key is not defined for homebrew)

	have preferred order of the different alternatives, customizable (at
what granularity?)

	for debian releases only apt dependencies are allowed, for stuff like
homebrew we can also depend on pip / gem

	per rules file or per key

	xylem resolve command should list all alternatives and help to
arbitrate

Random points

	bring back the source installer

	improve windows situation; possibly source installer? windows 8 app
store :-)

	integrate/interact with http://robotpkg.openrobots.org somehow? Check
their solution for ideas for xylem.

	continue on error option for install

	authority on rules and versions

Terminology

[TODO: Define terms]

	xylem key

	key database

	rules file

	(backend) installer

	package manager

	platform –> os/version tuple

	installer

	installer context

	package -> pm package

	rules file

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

xylem Rules

This module implements parsing and validating of rules spec files.

Note: These xylem rules files are compatible with rosdep’s files.

xylem Rules File Specification

First, the top level rules file has these properties:

	The rules file is a YAML 1.1 compliant file

	The rules file contains a single dictionary, the rules dict

the rules dict

The rules dict contains a mapping between xylem keys and definitions for
specific operating systems and package managers.

The rules dict has these properties:

	The keys of the rules dict are package manager agnostic xylem keys

	The values of the rules dict must be a dictionaries also, os
definition dicts

the os specific definition dict

An os specific definition dict is a mapping of operating system names to
os specific definitions. They have these properties:

	It has keys which map to os_names, e.g. ubuntu, osx

	There is a special ‘any’ key, i.e. ‘any_os’

	It can have values of type dict, with os_version keys

	It can have values of type list, a set of packages for the default
installer

	It can have values of type str, a package for the default installer

	A value of null or ‘[]’ indicates no action is required to resolve for
this os

When the value is a dict, then the keys of that dict are os_version’s
and the values of that dict are os_name and os_version specific
definitions for those xylem keys.

the ‘any_os’ key

The ‘any_os’ key for the os specific definition dict can be used to
indicate that the following definition matches any operating systems.
This is useful for situations like the pip installer, which works on
most operating systems, but is not specific to any one operating system.
When the ‘any_os’ key is used, then the installer must be specified
explicitly, i.e. no default key is used. Conversely, if the ‘any_os’ key
is used, then the ‘any_version’ key must be used for the os_version as
well, which makes sense because it doesn’t make sense to have a
definition which matches all operating systems but only a specific
operating system version.

For example, consider this rule snippet:

foo:
 any_os:
 any_version:
 pip:
 packages: [foo]
 ubuntu: [python-foo]
 debian: [python-foo]
 osx:
 any_version:
 homebrew: [foo]

In this case foo will be resolved like this:

windows:7 -> pip:foo
ubuntu:precise -> apt:python-foo
debian:wheezy -> apt:python-foo
osx:mountain_lion -> homebrew:foo

You can imagine the logic to implement this behavior as such:

foo_dict is a dictionary like the above YAML structure
os_name = get_os_name()
os_version = get_os_version()
if os_name in foo_dict:
 if os_version in foo_dict[os_name]:
 return foo_dict[os_name][os_version]
 elif 'any_version' in foo_dict[os_name]:
 return foo_dict[os_name]['any_version']
elif 'any_os' in foo_dict:
 if 'any_version' in foo_dict['any_os']:
 return foo_dict['any_os']['any_version']
raise NotFound

list and string expansion into os_version’s any_version

When the value of the os definition dict is a str, then it is converted
into a list containing that str.

Whether the value is a str converted into a list or originally a list,
the list is expanded into an any version (‘any_version’) key-value pair,
where the list is the value. Then the processing continues as normal.

For example, this snippet:

foo:
 ubuntu: [libfoo]

is expanded to:

foo:
 ubuntu:
 any_version: [libfoo]

The above snippet is a intermediate expansion, as any_version:
[libfoo] will get expanded further later.

The case where no action is required, can occur when the package exists
on the system by default. For example, on OS X many times the software
package comes with OS X and no action is required for it to be resolved.
This is represented with an empty list or null.

Whether originally a dict or expanded to a dict from a list, the
resulting os specific definition dict always has os_names for keys and
os_version specific definitions as values.

the os_version specific definition dict

The os_version specific definition dict’s have these properties:

	It has keys which map to os_version’s for the parent os_name.

	There can be one any_version key, i.e. ‘any_version’

	The values can be a list or str, and are converted like the os
definition dict

	The final values must be an installer specific definition dict

The os_version specific definition dict’s are exactly like the os_name
specific definition dict’s, except that the resulting values are
installer specific definition dict’s, and there is a wild card key.

the ‘any_version’ key

The any_version key, ‘any_version’, indicates that the value, which is
an installer specific definition dict, applies to all os_version’s which
do not have an explicit definition. For example, consider this snippet:

foo:
 ubuntu:
 lucid: [libfoo-1.8]
 any_version: [libfoo]

The above snippet will provide libfoo-1.8 if you ask xylem to
resolve foo for ubuntu:lucid, but will return libfoo for any
other version of ubuntu, e.g. for ubuntu:precise xylem will
resolve it as libfoo.

the installer specific definition dict

The installer specific definition dict has keys for installers, e.g.
apt, pip, or homebrew. The installer specific definition
dict is similar to the os_version specific definition dict except the
default_installer key is interpreted differently.

the ‘default_installer’ key

When the default installer key, ‘default_installer’, is used in the
installer specific definition dict, that indicates that the following
definition is for the default installer for that operating system.
This key cannot be used under the any_os key.

Examples

Basic:

foo: # xylem key
 ubuntu: # os name
 precise: # os version (or codename)
 apt: # installer
 packages: [libfoo] # packages are a list

This is an example of using some of the available shortcuts:

foo:
 ubuntu: libfoo
 debian: libfoo
bar:
 ubuntu:
 lucid: libbar-1.2
 any_version: libbar
baz:
 any_os:
 any_version:
 pip: [baz]
 ubuntu: [libbaz]

Which expands to:

foo:
 ubuntu:
 any_version:
 default_installer:
 packages: [libfoo]
 debian:
 any_version:
 default_installer:
 packages: [libfoo]
bar:
 ubuntu:
 lucid:
 default_installer:
 packages: [libbar-1.2]
 any_version:
 default_installer:
 packages: [libbar]
baz:
 any_os:
 any_version:
 pip:
 packages: [baz]
 ubuntu:
 any_version:
 default_installer:
 packages: [libbaz]

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

xylem Python API

Experimental: the xylem Python library is still unstable.

The xylem Python module supports both the xylem
command-line tool as well as libraries that wish to use xylem data
files to resolve dependencies.

As a developer, you may wish to extend xylem to add new OS
platforms or package managers.

Table of Contents

	xylem Python API
	Database

	Indices and tables

Database

Implements the update functionality.

This includes the functions to collect and process source files. Part of
this process is to load and run the spec parser, which are given by name
in the source files.

	
xylem.update.handle_spec_urls(spec, urls)

	Load a given spec parser by spec name and processed all urls.

Returns a list of new rules from parsed urls

	Parameters:	
	spec (str [http://docs.python.org/library/functions.html#str]) – name of a spec parser to load

	urls (list [http://docs.python.org/library/functions.html#list] of str [http://docs.python.org/library/functions.html#str]) – list of urls to load for the given spec parser

	
xylem.update.load_url(url, retry=2, retry_period=1, timeout=10)

	Load a given url with retries, retry_periods, and timeouts.

Based on https://github.com/ros-infrastructure/rosdistro/blob/master/src/rosdistro/loader.py

	Parameters:	
	url (str [http://docs.python.org/library/functions.html#str]) – URL to load and return contents of

	retry (int [http://docs.python.org/library/functions.html#int]) – number of times to retry the url on 503 or timeout

	retry_period (float [http://docs.python.org/library/functions.html#float]) – time to wait between retries in seconds

	timeout (float [http://docs.python.org/library/functions.html#float]) – timeout for opening the URL in seconds

	
xylem.update.update(prefix=None, dry_run=False)

	Update the xylem cache.

If the prefix is set then the source lists are searched for in the
prefix. If the prefix is not set (None) or the source lists are not
found in the prefix, then the default, builtin source list is used.

	Parameters:	
	prefix (str [http://docs.python.org/library/functions.html#str] or None [http://docs.python.org/library/constants.html#None]) – The config and cache prefix, usually ‘/’ or someother
prefix

	dry_run (bool [http://docs.python.org/library/functions.html#bool]) – If True, then no actual action is taken, only
pretend to

	
xylem.update.verify_rules(rules, spec)

	Verify that a set of rules are valid for internal storage.

	Parameters:	rules (dict [http://docs.python.org/library/stdtypes.html#dict]) – set of nested dictionaries which is the internal
DB format

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

xylem package

Subpackages

	xylem.commands package
	Submodules

	xylem.commands.main module

	xylem.commands.update module

	Module contents

	xylem.sources package
	Submodules

	xylem.sources.impl module

	Module contents

	xylem.specs package
	Submodules

	xylem.specs.impl module

	xylem.specs.rules module
	xylem Rules File Specification
	the rules dict

	the os specific definition dict
	the ‘any_os’ key

	list and string expansion into os_version’s any_version

	the os_version specific definition dict
	the ‘any_version’ key

	the installer specific definition dict
	the ‘default_installer’ key

	Examples

	Module contents

Submodules

xylem.log_utils module

	
xylem.log_utils.debug(msg, file=None, *args, **kwargs)

	Print debug to console or file.

Works like print [http://docs.python.org/library/functions.html#print] and optionally uses terminal colors. Can
be enabled or disabled with enable_debug().

	
xylem.log_utils.enable_debug(state=True)

	En- or disable printing debug output to console.

	
xylem.log_utils.error(msg, file=None, exit=False, *args, **kwargs)

	Print error statement and optionally exit.

Works like print [http://docs.python.org/library/functions.html#print] and optionally uses terminal colors.

	
xylem.log_utils.info(msg, file=None, *args, **kwargs)

	Print info to console or file.

Works like print [http://docs.python.org/library/functions.html#print] and optionally uses terminal colors.

	
xylem.log_utils.warning(msg, file=None, *args, **kwargs)

	Print warning to console or file.

Works like print [http://docs.python.org/library/functions.html#print] and optionally uses terminal colors.

xylem.terminal_color module

Module to enable color terminal output.

	
class xylem.terminal_color.ColorTemplate(template)

	Bases: string.Template [http://docs.python.org/library/string.html#string.Template]

	
delimiter = '@'

	

	
pattern = <_sre.SRE_Pattern object at 0x7fc2f5fdf940>

	

	
xylem.terminal_color.ansi(key)

	Return the escape sequence for a given ansi color key.

	
xylem.terminal_color.disable_ANSI_colors()

	Disable output of ANSI color serquences with ansi().

Set all the ANSI escape sequences to empty strings, which
effectively disables console colors.

	
xylem.terminal_color.enable_ANSI_colors()

	Enable output of ANSI color serquences with ansi().

Colors are enabled by populating the global module dictionary
_ansi with ANSI escape sequences.

	
xylem.terminal_color.fmt(msg)

	Replace color annotations with ansi escape sequences.

	
xylem.terminal_color.sanitize(msg)

	Sanitize the existing msg, use before adding color annotations.

xylem.update module

Implements the update functionality.

This includes the functions to collect and process source files. Part of
this process is to load and run the spec parser, which are given by name
in the source files.

	
xylem.update.handle_spec_urls(spec, urls)

	Load a given spec parser by spec name and processed all urls.

Returns a list of new rules from parsed urls

	Parameters:	
	spec (str [http://docs.python.org/library/functions.html#str]) – name of a spec parser to load

	urls (list [http://docs.python.org/library/functions.html#list] of str [http://docs.python.org/library/functions.html#str]) – list of urls to load for the given spec parser

	
xylem.update.load_url(url, retry=2, retry_period=1, timeout=10)

	Load a given url with retries, retry_periods, and timeouts.

Based on https://github.com/ros-infrastructure/rosdistro/blob/master/src/rosdistro/loader.py

	Parameters:	
	url (str [http://docs.python.org/library/functions.html#str]) – URL to load and return contents of

	retry (int [http://docs.python.org/library/functions.html#int]) – number of times to retry the url on 503 or timeout

	retry_period (float [http://docs.python.org/library/functions.html#float]) – time to wait between retries in seconds

	timeout (float [http://docs.python.org/library/functions.html#float]) – timeout for opening the URL in seconds

	
xylem.update.update(prefix=None, dry_run=False)

	Update the xylem cache.

If the prefix is set then the source lists are searched for in the
prefix. If the prefix is not set (None) or the source lists are not
found in the prefix, then the default, builtin source list is used.

	Parameters:	
	prefix (str [http://docs.python.org/library/functions.html#str] or None [http://docs.python.org/library/constants.html#None]) – The config and cache prefix, usually ‘/’ or someother
prefix

	dry_run (bool [http://docs.python.org/library/functions.html#bool]) – If True, then no actual action is taken, only
pretend to

	
xylem.update.verify_rules(rules, spec)

	Verify that a set of rules are valid for internal storage.

	Parameters:	rules (dict [http://docs.python.org/library/stdtypes.html#dict]) – set of nested dictionaries which is the internal
DB format

xylem.util module

Provides common utility functions for xylem.

	
xylem.util.add_global_arguments(parser)

	

	
class xylem.util.change_directory(directory='')

	Bases: object

	
xylem.util.create_temporary_directory(prefix_dir=None)

	Create a temporary directory and return its location.

	
xylem.util.custom_exception_handler(type, value, tb)

	

	
xylem.util.handle_global_arguments(args)

	

	
xylem.util.pdb_hook()

	

	
xylem.util.print_exc(exc)

	

	
class xylem.util.redirected_stdio

	Bases: object

	
class xylem.util.temporary_directory(prefix='')

	Bases: object

Module contents

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem package

xylem.commands package

Submodules

xylem.commands.main module

	
xylem.commands.main.create_subparsers(parser, cmds)

	

	
xylem.commands.main.list_commands()

	

	
xylem.commands.main.load_command_description(command_name)

	

	
xylem.commands.main.main(sysargs=None)

	

	
xylem.commands.main.print_usage()

	

xylem.commands.update module

	
xylem.commands.update.main(args=None)

	

	
xylem.commands.update.prepare_arguments(parser)

	

Module contents

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem package

xylem.sources package

Submodules

xylem.sources.impl module

	
xylem.sources.impl.get_default_source_urls()

	Return the list of default source urls.

	Returns:	lists of source urls keyed by spec type

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	
xylem.sources.impl.get_source_urls(prefix)

	Return a list of source urls.

	Parameters:	prefix – prefix on which to look for etc/xylem/sources.list.d

	Type:	prefix: str

	Returns:	lists of source urls keyed by spec, or None if no configs
found

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	
xylem.sources.impl.load_source_lists_from_path(path)

	Return a list of source urls from a given directory of source lists.

Only files which have the .yaml extension are processed, other
files, hidden files, and directories are ignored.

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – directory containing source list files

	Returns:	lists of source urls keyed by spec type

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	
xylem.sources.impl.parse_list(data, file_path='<string>')

	Parse a given list of urls and returns them as a list of source urls.

	Parameters:	data (str [http://docs.python.org/library/functions.html#str]) – string containing a list of source urls

	Returns:	lists of source urls keyed by spec type

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	Raises:	ValueError, yaml.YAMLError

	
xylem.sources.impl.parse_list_file(file_path)

	Parse a given list file and returns a list of source urls.

	Parameters:	file_path (str [http://docs.python.org/library/functions.html#str]) – path to file containing a list of source urls

	Returns:	lists of source urls keyed by spec type

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

Module contents

	
xylem.sources.get_default_source_urls()

	Return the list of default source urls.

	Returns:	lists of source urls keyed by spec type

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	
xylem.sources.get_source_urls(prefix)

	Return a list of source urls.

	Parameters:	prefix – prefix on which to look for etc/xylem/sources.list.d

	Type:	prefix: str

	Returns:	lists of source urls keyed by spec, or None if no configs
found

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem package

xylem.specs package

Submodules

xylem.specs.impl module

	
exception xylem.specs.impl.SpecParsingError(msg, related_snippet=None)

	Bases: exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]

Raised when an invalid spec element is encountered while parsing.

	
xylem.specs.impl.get_spec_parser(name)

	Return a spec parser of a given name, or None if it is not found.

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – name of the requested spec parser

	Returns:	the requested spec parser, or None if it isn’t found

	Return type:	types.FunctionType

	
xylem.specs.impl.list_spec_parsers()

	List available spec parsers, by name.

	Returns:	list of spec parsers by name

	Return type:	list`(:py:obj:`str)

xylem.specs.rules module

This module implements parsing and validating of rules spec files.

Note: These xylem rules files are compatible with rosdep’s files.

xylem Rules File Specification

First, the top level rules file has these properties:

	The rules file is a YAML 1.1 compliant file

	The rules file contains a single dictionary, the rules dict

the rules dict

The rules dict contains a mapping between xylem keys and definitions for
specific operating systems and package managers.

The rules dict has these properties:

	The keys of the rules dict are package manager agnostic xylem keys

	The values of the rules dict must be a dictionaries also, os
definition dicts

the os specific definition dict

An os specific definition dict is a mapping of operating system names to
os specific definitions. They have these properties:

	It has keys which map to os_names, e.g. ubuntu, osx

	There is a special ‘any’ key, i.e. ‘any_os’

	It can have values of type dict, with os_version keys

	It can have values of type list, a set of packages for the default
installer

	It can have values of type str, a package for the default installer

	A value of null or ‘[]’ indicates no action is required to resolve for
this os

When the value is a dict, then the keys of that dict are os_version’s
and the values of that dict are os_name and os_version specific
definitions for those xylem keys.

the ‘any_os’ key

The ‘any_os’ key for the os specific definition dict can be used to
indicate that the following definition matches any operating systems.
This is useful for situations like the pip installer, which works on
most operating systems, but is not specific to any one operating system.
When the ‘any_os’ key is used, then the installer must be specified
explicitly, i.e. no default key is used. Conversely, if the ‘any_os’ key
is used, then the ‘any_version’ key must be used for the os_version as
well, which makes sense because it doesn’t make sense to have a
definition which matches all operating systems but only a specific
operating system version.

For example, consider this rule snippet:

foo:
 any_os:
 any_version:
 pip:
 packages: [foo]
 ubuntu: [python-foo]
 debian: [python-foo]
 osx:
 any_version:
 homebrew: [foo]

In this case foo will be resolved like this:

windows:7 -> pip:foo
ubuntu:precise -> apt:python-foo
debian:wheezy -> apt:python-foo
osx:mountain_lion -> homebrew:foo

You can imagine the logic to implement this behavior as such:

foo_dict is a dictionary like the above YAML structure
os_name = get_os_name()
os_version = get_os_version()
if os_name in foo_dict:
 if os_version in foo_dict[os_name]:
 return foo_dict[os_name][os_version]
 elif 'any_version' in foo_dict[os_name]:
 return foo_dict[os_name]['any_version']
elif 'any_os' in foo_dict:
 if 'any_version' in foo_dict['any_os']:
 return foo_dict['any_os']['any_version']
raise NotFound

list and string expansion into os_version’s any_version

When the value of the os definition dict is a str, then it is converted
into a list containing that str.

Whether the value is a str converted into a list or originally a list,
the list is expanded into an any version (‘any_version’) key-value pair,
where the list is the value. Then the processing continues as normal.

For example, this snippet:

foo:
 ubuntu: [libfoo]

is expanded to:

foo:
 ubuntu:
 any_version: [libfoo]

The above snippet is a intermediate expansion, as any_version:
[libfoo] will get expanded further later.

The case where no action is required, can occur when the package exists
on the system by default. For example, on OS X many times the software
package comes with OS X and no action is required for it to be resolved.
This is represented with an empty list or null.

Whether originally a dict or expanded to a dict from a list, the
resulting os specific definition dict always has os_names for keys and
os_version specific definitions as values.

the os_version specific definition dict

The os_version specific definition dict’s have these properties:

	It has keys which map to os_version’s for the parent os_name.

	There can be one any_version key, i.e. ‘any_version’

	The values can be a list or str, and are converted like the os
definition dict

	The final values must be an installer specific definition dict

The os_version specific definition dict’s are exactly like the os_name
specific definition dict’s, except that the resulting values are
installer specific definition dict’s, and there is a wild card key.

the ‘any_version’ key

The any_version key, ‘any_version’, indicates that the value, which is
an installer specific definition dict, applies to all os_version’s which
do not have an explicit definition. For example, consider this snippet:

foo:
 ubuntu:
 lucid: [libfoo-1.8]
 any_version: [libfoo]

The above snippet will provide libfoo-1.8 if you ask xylem to
resolve foo for ubuntu:lucid, but will return libfoo for any
other version of ubuntu, e.g. for ubuntu:precise xylem will
resolve it as libfoo.

the installer specific definition dict

The installer specific definition dict has keys for installers, e.g.
apt, pip, or homebrew. The installer specific definition
dict is similar to the os_version specific definition dict except the
default_installer key is interpreted differently.

the ‘default_installer’ key

When the default installer key, ‘default_installer’, is used in the
installer specific definition dict, that indicates that the following
definition is for the default installer for that operating system.
This key cannot be used under the any_os key.

Examples

Basic:

foo: # xylem key
 ubuntu: # os name
 precise: # os version (or codename)
 apt: # installer
 packages: [libfoo] # packages are a list

This is an example of using some of the available shortcuts:

foo:
 ubuntu: libfoo
 debian: libfoo
bar:
 ubuntu:
 lucid: libbar-1.2
 any_version: libbar
baz:
 any_os:
 any_version:
 pip: [baz]
 ubuntu: [libbaz]

Which expands to:

foo:
 ubuntu:
 any_version:
 default_installer:
 packages: [libfoo]
 debian:
 any_version:
 default_installer:
 packages: [libfoo]
bar:
 ubuntu:
 lucid:
 default_installer:
 packages: [libbar-1.2]
 any_version:
 default_installer:
 packages: [libbar]
baz:
 any_os:
 any_version:
 pip:
 packages: [baz]
 ubuntu:
 any_version:
 default_installer:
 packages: [libbaz]

	
xylem.specs.rules.expand_definition(definition)

	

	
xylem.specs.rules.expand_installer_definition(installer_dict)

	

	
xylem.specs.rules.expand_os_definition(os_dict)

	

	
xylem.specs.rules.expand_os_version_definition(version_dict)

	

	
xylem.specs.rules.expand_rules(rules)

	

	
xylem.specs.rules.rules_spec_parser(data)

	

Module contents

	
xylem.specs.get_spec_parser(name)

	Return a spec parser of a given name, or None if it is not found.

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – name of the requested spec parser

	Returns:	the requested spec parser, or None if it isn’t found

	Return type:	types.FunctionType

	
xylem.specs.list_spec_parsers()

	List available spec parsers, by name.

	Returns:	list of spec parsers by name

	Return type:	list`(:py:obj:`str)

	
exception xylem.specs.SpecParsingError(msg, related_snippet=None)

	Bases: exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError]

Raised when an invalid spec element is encountered while parsing.

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	xylem 0.1.0 documentation

 Python Module Index

 x

 			

 		
 x	

 	[image: -]
 	
 xylem	

 	
 	
 xylem.commands	

 	
 	
 xylem.commands.main	

 	
 	
 xylem.commands.update	

 	
 	
 xylem.log_utils	

 	
 	
 xylem.sources	

 	
 	
 xylem.sources.impl	

 	
 	
 xylem.specs	

 	
 	
 xylem.specs.impl	

 	
 	
 xylem.specs.rules	

 	
 	
 xylem.terminal_color	

 	
 	
 xylem.update	

 	
 	
 xylem.util	

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	xylem 0.1.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	

 	add_global_arguments() (in module xylem.util)

 	

 	ansi() (in module xylem.terminal_color)

C

 	

 	change_directory (class in xylem.util)

 	ColorTemplate (class in xylem.terminal_color)

 	create_subparsers() (in module xylem.commands.main)

 	

 	create_temporary_directory() (in module xylem.util)

 	custom_exception_handler() (in module xylem.util)

D

 	

 	debug() (in module xylem.log_utils)

 	delimiter (xylem.terminal_color.ColorTemplate attribute)

 	

 	disable_ANSI_colors() (in module xylem.terminal_color)

E

 	

 	enable_ANSI_colors() (in module xylem.terminal_color)

 	enable_debug() (in module xylem.log_utils)

 	error() (in module xylem.log_utils)

 	expand_definition() (in module xylem.specs.rules)

 	

 	expand_installer_definition() (in module xylem.specs.rules)

 	expand_os_definition() (in module xylem.specs.rules)

 	expand_os_version_definition() (in module xylem.specs.rules)

 	expand_rules() (in module xylem.specs.rules)

F

 	

 	fmt() (in module xylem.terminal_color)

G

 	

 	get_default_source_urls() (in module xylem.sources)

 	

 	(in module xylem.sources.impl)

 	get_source_urls() (in module xylem.sources)

 	

 	(in module xylem.sources.impl)

 	

 	get_spec_parser() (in module xylem.specs)

 	

 	(in module xylem.specs.impl)

H

 	

 	handle_global_arguments() (in module xylem.util)

 	

 	handle_spec_urls() (in module xylem.update), [1]

I

 	

 	info() (in module xylem.log_utils)

L

 	

 	list_commands() (in module xylem.commands.main)

 	list_spec_parsers() (in module xylem.specs)

 	

 	(in module xylem.specs.impl)

 	load_command_description() (in module xylem.commands.main)

 	

 	load_source_lists_from_path() (in module xylem.sources.impl)

 	load_url() (in module xylem.update), [1]

M

 	

 	main() (in module xylem.commands.main)

 	

 	(in module xylem.commands.update)

P

 	

 	parse_list() (in module xylem.sources.impl)

 	parse_list_file() (in module xylem.sources.impl)

 	pattern (xylem.terminal_color.ColorTemplate attribute)

 	pdb_hook() (in module xylem.util)

 	

 	prepare_arguments() (in module xylem.commands.update)

 	print_exc() (in module xylem.util)

 	print_usage() (in module xylem.commands.main)

 	
 Python Enhancement Proposals

 	

 	PEP 257

 	PEP 8

 	PEP 8
#naming-conventions

R

 	

 	redirected_stdio (class in xylem.util)

 	

 	rules_spec_parser() (in module xylem.specs.rules)

S

 	

 	sanitize() (in module xylem.terminal_color)

 	

 	SpecParsingError, [1]

T

 	

 	temporary_directory (class in xylem.util)

U

 	

 	update() (in module xylem.update), [1]

V

 	

 	verify_rules() (in module xylem.update), [1]

W

 	

 	warning() (in module xylem.log_utils)

X

 	

 	xylem (module), [1]

 	xylem.commands (module)

 	xylem.commands.main (module)

 	xylem.commands.update (module)

 	xylem.log_utils (module)

 	xylem.sources (module)

 	xylem.sources.impl (module)

 	

 	xylem.specs (module)

 	xylem.specs.impl (module)

 	xylem.specs.rules (module), [1]

 	xylem.terminal_color (module)

 	xylem.update (module), [1]

 	xylem.util (module)

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 apidoc/modules.html

 Navigation

 		
 index

 		
 modules |

 		xylem 0.1.0 documentation »

xylem

		xylem package
		Subpackages
		xylem.commands package
		Submodules

		xylem.commands.main module

		xylem.commands.update module

		Module contents

		xylem.sources package
		Submodules

		xylem.sources.impl module

		Module contents

		xylem.specs package
		Submodules

		xylem.specs.impl module

		xylem.specs.rules module

		Module contents

		Submodules

		xylem.log_utils module

		xylem.terminal_color module

		xylem.update module

		xylem.util module

		Module contents

 © Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		xylem 0.1.0 documentation »

 All modules for which code is available

		xylem.commands.main

		xylem.commands.update

		xylem.log_utils

		xylem.sources

		xylem.sources.impl

		xylem.specs

		xylem.specs.impl

		xylem.specs.rules

		xylem.terminal_color

		xylem.update

		xylem.util

 © Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

_static/up.png

_static/file.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		xylem 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

