

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	xylem 0.1.0 documentation

xylem

xylem is a package manager abstraction tool.
It can be used to install dependencies on any supported platform.

For example, if you want to install boost on your machine you would
simply run xylem install boost. This command would cause xylem
to determine your OS and OS Version, look up the corresponding package
managers for that OS, OS Version tuple, look up the appropriate value
for boost for that OS pair, and finally invoke the package manager
to install boost, e.g. for Ubuntu that might be sudo apt-get install
libboost-all-dev.

This tool allows you to generalize your installation instructions and
define your software package’s dependencies once. xylem also has an
API which can be used to automate installation of resources, like for
automated tests or for simplified installation scripts.

Contents:

	xylem‘s Design Overview
	Motivation

	Goals

	Supported platforms

	Plugins

	Improvements over rosdep

	Terminology

	xylem Rules files
	Notes

	any_version and version ranges

	xylem Python API
	Database

	Indices and tables

	xylem
	xylem package

Installing from Source

Given that you have a copy of the source code, you can install xylem
like this:

$ python setup.py install

Note

If you are installing to a system Python you may need to use
sudo.

If you do not want to install xylem into your system Python, or you
don’t have access to sudo, then you can use a virtualenv [https://virtualenv.pypa.io/].

Hacking

Because xylem uses setuptools [http://pythonhosted.org/setuptools/] you can (and should) use the
develop [http://pythonhosted.org/setuptools/setuptools.html#development-mode] feature:

$ python setup.py develop

Note

If you are developing against the system Python, you may need
sudo.

This will “install” xylem to your Python path, but rather than
copying the source files, it will instead place a marker file in the
PYTHONPATH redirecting Python to your source directory. This allows
you to use it as if it were installed but where changes to the source
code take immediate affect.

When you are done with develop mode you can (and should) undo it like
this:

$ python setup.py develop -u

Note

If you are developing against the system Python, you may need
sudo.

That will “uninstall” the hooks into the PYTHONPATH which point to
your source directory, but you should be wary that sometimes console
scripts do not get removed from the bin folder.

Code Style

The source code of xylem aims to follow the Python style guide [http://docs.python-guide.org/en/latest/writing/style] and the
PEP 8 [http://www.python.org/dev/peps/pep-0008] guidelines. In particular a line width of 79 characters is
enforced for python code, while multiline comments or docstrings as well
as text files should use a line width of 72.

The test-suite checks that all xylem code passes the flake8. On top
of that identifer names should follow the rules layed out in PEP 8
 [http://www.python.org/dev/peps/pep-0008#naming-conventions] and docstrings should adhere to PEP 257 [http://www.python.org/dev/peps/pep-0257], however
these are not automatically checked.

The most important rules are readability and consistency and use of
common sense.

Testing

In order to run the tests you will need to install nosetests [https://nose.readthedocs.org/] and flake8 [https://flake8.readthedocs.org/].

Once you have installed those, then run nosetest in the root of the
xylem source directory:

$ nosetests

Building the Documentation

In order to build the docs you will need to first install Sphinx [http://sphinx-doc.org/]. We use the Read the Docs Sphinx Theme [https://github.com/snide/sphinx_rtd_theme], which you can install
with:

$ sudo pip install sphinx_rtd_theme

You can build the documentation by invoking the Sphinx provided make
target in the docs folder:

$ # In the docs folder
$ make html
$ open _build/html/index.html

Sometimes Sphinx does not pickup on changes to modules in packages which
utilize the __all__ mechanism, so on repeat builds you may need to
clean the docs first:

$ # In the docs folder
$ make clean
$ make html
$ open _build/html/index.html

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

xylem‘s Design Overview

Motivation

What is the motivation for developing xylem as a new tool as opposed
to updating rosdep?

rosdep was originally designed for use with rosbuild and both
code and command line interface are structured for that purpose. The
notion of stacks, packages and manifests where rosdep keys were
defined at a stack level is deeply baked into the design. Later
adaptations to work with catkin were bolted on to that design in a
suboptimal way and it became increasingly hard to extend rosdep with
new features. Thus, rosdep has a lot of unused or overly
complicated code.

Moreover, rosdep is currently linked tightly to several other ROS
tools like bloom, such that even minor changes in rosdep can
have deep ramifications in the tool chain. Due to this fragility,
releases are slow and infrequent. Moreover, rosdep is not modular
enough to facilitate extensions through third-party python packages.
Together, all this implies that it is extremely difficult to improve
rosdep, implement new features, and get them released.

Therefore it was concluded that it be more efficient to start fresh,
borrowing ideas and code from rosdep, but designing it the way it
should be rather than the way it used to be. Hence, xylem was born.

Goals

xylem is supposed to supersede rosdep as a package manager
abstraction tool that can be used to install dependencies on any
supported platform in a uniform manner. In particular, the goals of
xylem are the following.

Separation of concerns

xylem addresses one of the key shortcomings of rosdep, namely
its tight coupling with other ROS tools, with a modular design that
considers the following building blocks.

	A core library that provides the infrastructure to read in rule
files, resolve keys depending on the user platform and invokes package
managers to install the desired software.

	A set of plugins that provide specific functionality:
	operating system support (e.g. Ubuntu, OS X,
cygwin)

	installers, e.g. package managers
(e.g. APT, PIP, Homebrew), but also for example the source installer.

	frontend input of keys (e.g. directly from the
command line or by parsing a directory of ROS packages)

	rules specification (e.g. rules files or
released ROS packages from rosdistro)

	default sources (e.g. additional default rules
files from robot vendors)

	command verbs (e.g. xylem install, xylem
update)

xylem comes with default plugins for all of the above points of
extension.

Extensibility

Plugins should be able to extend the core tool from within other Python
packages, such that extensions can be made without the need to touch the
core package. This allows extensions to be developed and distributed
somewhat independently of xylem releases. General purpose plugins
that have proven to be useful to a range of users should be considered
for inclusion into the core library.

Independence from ROS

One aim with designing xylem in a modular and extensible way is
allowing it to be completely independent from ROS. In particular the
core library should not have any ROS specific special cases or
assumptions. Any functionality that is specific to ROS should be
implemented as plugins, and possibly distributed as a separate package
xylem-ros.

The ways in which rosdep is currently tied to ROS are:

	Frontend input, for example by scanning a directory for ROS packages
and checking / installing their dependencies.

	Extracting resolution rules from rosdistro information.

	API access from tools like catkin, bloom or catkin_lint.

	Use of other ROS specific packages, e.g. rospkg.os_detect.

Replace rosdep

One aim for xylem together with its ROS specific plugins is to
provide a full future replacement for rosdep. This entails providing
command line tools to check and install dependencies of ROS packages as
well as providing an appropriate python API that allows tools such as
catkin or bloom to query xylem for dependency information. We do
not aim at backward compatibility at the CLI or API level, but at the
level of provided features.

In particular, this also means that the keys currently specified in
package.xml files of ROS packages should continue to work with xylem
(for non-EOL distributions at the very least).

Full backward compatibility in particular to EOL tools such as
rosbuild does not have to be achieved.

Consider improvements

The design of xylem should consider the known limitations of
rosdep and improve beyond the functionality of rosdep. While
proposed enhancements possibly are not implemented right away, it should
be ensured that future extensions allow their realization without the
need to break backwards-compatibility or for heavy redesign.

The following list of exemplar improvements is not necessarily
exhaustive, nor definitive. More details on some of these ideas can be
found further blow.

	improve rule files
	smaller backwards-compatible changes, mostly syntactic sugar for
less repetition for different platforms (any_version,
any_os) [details]

	support ranges of versions and definitions for versions greater or
equal to a specific version [details]

	support options to OSs and condition rules on them [details]

	support package versions in rules files, e.g. parsed from
package.xml files [details]

	support different types of dependencies such as test
dependencies

	consider precedence of conflicting rules [details]

	inter-key dependencies [details]

	support package manager sources (e.g. PPAs for APT on Ubuntu)
[details]

	support package manager prerequisites (such as PM is installed, PM
cache is up-to-date, correct PPA is installed) [details]

	support multiple resolution alternatives on the same platform with
sensible defaults as well as user-configurable arbitration between
them (e.g. macports vs homebrew, apt vs pip) [details]

	configure source/cache location and supply working cache with
installation [details]

	configure package manager plugins from config/cli (e.g. whether to use
sudo or not, supply additional command line arguments) [details]

	support concurrent invocations of xylem, in particular the
update verb for tools such as bloom running in parallel.
[details]

	support automatic cache updates (integrate update with native package
manager, cronjob, ...)

	support virtual packages and/or A OR B logic

	support derivative operating systems (e.g. use Ubuntu rules on Ubuntu
derivatives if no specific rules are available) [details]

	warn users when xylem is out of date [details]

	version the rules database and force update on version changes

	improve situation on Windows

	support proxies for any downloads as well as for the installer
invocations, see ros-infrastructure/rosdep#335 [https://github.com/ros-infrastructure/rosdep/pull/335]

	support package managers with options (such as formula options on
homebrew, use flags on gentoo?)

Anti-Goals

xylem does not aim to replace package managers or package software
itself. While support for package-manager-less platforms can be achieved
with installer plugins such as the source installer, it is not an
objective of xylem to systematically maintain such installation scripts.

Supported platforms

xylem aims to support at least the following platforms (which is
what rosdep currently supports) with their native package managers

	arch (pacman)

	windows/cygwin (apt-cyg)

	debian (apt)

	freebsd (pkg_add)

	gentoo (portage)

	opensuse (zypper)

	osx (homebrew, macports)

	redhat (yum)

as well as the following language-specific cross-platform packages
managers

	ruby (gem)

	python (pip)

and a platform independent source installer:

	source

On the wish list is better support for Windows, but it is unclear how
this could be achieved.

Plugins

In order to be modular and extensible by independent Python packages,
xylem uses the Entry Points [http://stackoverflow.com/questions/774824/explain-python-entry-points] concept of setuptools. The
following discusses the pluggable parts of xylem laid out above in more detail.

OS support

Operating system support includes:

	detecting if current OS matches the OS plugin

	detecting the current OS version (or codename)

	specify supported installers, default installer and installer order of
preference

OS plugins are derived from xylem.os_support.OS and
xylem.os_support.OSSupport manages the list of os plugins as
well as the current (possibly overridden) os.
xylem.os_support.OSSupport is high-level API, but not
necessarily used directly, but rather inside
xylem.installers.InstallerContext

[image: _images/os_support.png]
Notes:

	At the moment OS support plugins are not able to list all versions,
but only ever detect the current version. The advantage is that no
code update is necessary for each new OS release. The disadvantage is
that the list of versions is not available e.g. to verify the
structure of rules files or to distinguish between package manager and
version names in rules definitions.
	Nikolaus: I think we should leave it like that for now.

	For each OS plugin we have to choose if we use numbers or code names
to specify versions. In general we try to use version code-names if
possible. Version numbers have the disadvantage of being less
memorable and some care needs to be taken because YAML might parse
version numbers as floats, not strings. Codenames for some operating
systems have the disadvantage that they are not in alphabetical order
(e.g. OS X, debian), meaning the rules definition mappings in YAML are
not in the chronological OS version order. Moreover, without the OS
plugins listing the existing versions, version ranges cannot be
specified because the order of versions is in general unknown. One
might want to support shortcut notation in rules files like ubuntu:
"lucid - oneric": foo-pkg.
	Nikolaus: I’m not sure what we can do about this without listing
the known OS versions. Even if they are known, we would need to have
this information for formatting and verifying rules files (order of
version dict).

	Should are OS configuration like registered installers and installer
order of preference always per-OS as is in rosdep, or do we
possibly need optional per-version distinction for these?
	Nikolaus: I believe per OS is fine for now.

Installers

The supported installers are defined as plugins such that support for
new installers can be added by external Python packages. Installers
typically represent support for a specific package manager like APT, but
not necessarily, as is the case for the source installer. The minimal
functionality an installer needs to provide is:

	check if specific packages are installed

	install packages

Installer plugins are derived from Installer. The list of known installer plugins is
managed by a high-level API context object, the InstallerContext. The
InstallerContext uses
OSDetect to manage the
detected/overridden OS.

setup_installers()
uses information from user configuration, os plugins and installer
plugins to prepare the list of installers for the current os, their
priorities, as well as the default installer.
The idea is that information about which installer is used when multiple
possible resolutions exist can come from different sources. In the
default case, OS plugins specify which installers are used on that
plugin (including a order of preference through priorities and a default
installer). On top of that platform independent installer plugins can
declare to be used on specific OSs (e.g. all OSs). This allows to write
new installer plugins (e.g. for go get) that are available on
platforms without touching the os plugins. Lastly, the user config can
override all of that (available installers as well as their priorities).

[image: _images/installers.png]
The following are ideas for additional functionality of installer
plugins. It is not quite clear how they are formalized in code. Maybe
just methods that may be defined (duck typing or ABC mixin style). Some
of these (like support for options) can be done transparently (as is
done for homebrew in rosdep), but some require interaction with other
components (e.g. uninstall, native reinstall, versions).

	support uninstall
	e.g. source installer does not support this

	support native reinstall
	Use the pm’s native reinstall command as opposed to
uninstall+install

	Nikolaus: is this ever useful?

	support to attempt install without dependencies
	this would be needed for a specified-only option to the
install command.

	Nikolaus: not sure if we need this at all.

	support package versions
	check which version of package is installed

	check if installed package is outdated

	upgrade installed package to latest version

	(install specific version of package)

	support cache update
	check if package manager cache is outdated

	update cache (like apt-get update) or provide instructions for
user how to update pm

	support options
	some package managers additional options supplied when installing a
package (homebrew, gentoo (use-flags)?)

	pass correct options to installer

	check if options for installed package satisfy the requested options
(e.g. they are superset)

	native dependencies
	list all package manager dependencies of specific packages

	the idea is that we let the package manager install the dependencies
and only issue the install command for the necessary leafs

	Nikolaus: do we need this?

Notes:

	We need to allow the configuration to completely disable installers
(for specific os), e.g. disable macports on OS X (in favour of
homebrew).

	Can we change the default resolution on OS X based on which of PM
(macports, homebrew) is installed? With that the resolution depends on
the system state, which is maybe not so nice.

	See http://www.ros.org/reps/rep-0112.html and
http://www.ros.org/reps/rep-0111.html

Frontend input

It needs to be possible to extend the way the user passes keys to be
resolved to xylem. The basic usage would be directly passing a list
of keys on the command line or API function. Another input would be
parsing of ROS packages and checking the package.xml files. Another
one would be a new file format .xylem, which allows non ROS packages
to specify dependencies for convenient installation.

Notes:

	Nikolaus: I’m not sure yet how exactly those plugins would look.

	Implementing these as new command verbs gives ultimate flexibility,
but on the other hand it makes much more sense if the standard
commands like install or check can be extended. E.g. ROS
support plugins for xylem should be able to provide an option like
--from-path for the install verb.

	For compatibility of different frontends there are the following
ideas:
	Either the desired frontend has to be specified at the command line,
e.g. xylem install --frontend=ros desktop_full
--rosdistro=hydro, xylem install --ros --from-path src,

	or the frontends register command line options that are unique, e.g.
xylem install --rospkg desktop_full,
xylem install --ros-from-path .,

	or xylem can work some magic to find out which frontend the user
desires, i.e. it determines if the input from the positional command
line arguments consists of keys, directories, or ROS-packages. For
directories is checks if they contain ROS packages with
package.xml files or .xylem files. There is an order on
which frontend takes precedence, which can be overwritten by
explicitly specifying the frontend.

	Nikolaus: This last alternative might make for the best just
works user experience, but needs to be carefully thought through in
order to not appear confusing.

Rules specification

The rosdep model for the definition of rules is configured in source
files (e.g. 20-default-sources.yaml) that contain the URLs of rules
files (base.yaml). Multiple source files are considered in their
alphabetical order. Having multiple files allows robot vendors to ship
their own source files independently of the base install and also allows
to organize the base rules files (e.g. one file for all python packages
rules). xylem will be using a similar format of source files listing
rules files, with some (mostly) backwards- compatible (and already
implemented) changes to the rules file format (any_os,
any_version, see xylem Rules files). spec plugins can define
new types of specifications for rules. The source files indicate which
spec plugin to use for each entry. Right now we can foresee the
following cases that might come as new spec plugins:

	New rules file format that is not compatible with the existing format.
	This would work in a very similar fashion to the initial
RulesSpec spec plugin.

	Rules derived from rosdistro.
	This rules spec uses the rosdistro package to derive rules for
each ROS distro.

The design for the rules sources and spec plugins is as follows:

[image: _images/sources.png]
Spec plugins derive from Spec. They define
how rules are specified and at the core provide load_data and
lookup methods. The plugin for rules files is RulesSpec

A SourcesContext object manages
known spec plugins as well as the location of source and cache files
(default: /etc/xylem/sources.d/ and /var/cache/xylem/sources).
Those locations can be either configured by specifying a prefix (for
FHS comaptible folder layout) or a xylem_dir (for layout suitable
for in-home-folder configuration).

The source files are ordered mappings of spec plugin names to arguments.
In the case of the default Rules spec plugin
the arguments are simple the rule file URL. For example:

Latest rules in new format
- rules2: 'files://latest/rules/using/new/rules/format/base.yaml'
Existing rules in legacy format
- rules: 'https://github.com/ros/rosdistro/raw/master/rosdep/base.yaml'
- rules: 'https://github.com/ros/rosdistro/raw/master/rosdep/python.yaml'
- rules: 'https://github.com/ros/rosdistro/raw/master/rosdep/ruby.yaml'
- rosdistro:
 rosdistro_url: 'https://github.com/ros/rosdistro...'
 use_ROSDISTRO_URL: yes
 some_more_optional_arguments: '...'

A RulesDatabase is
initialized given a SourcesContext. It loads all source files to
create an ordered list of RulesSource objects. Each RulesSource
references the according spec plugin and arguments from the entry in the
source file. Moreover, cache and meta data are managed by these objects.
The data (== rules specifications) in the RulesDatabase can be
loaded by invoking the spec plugins. Data and meta information can be
saved to and loaded from cache. During lookup, all RulesSource
objects are considered in order and the result merged. lookup
returns a dictionary mapping installers to installer rules. The
installer priority determines which of the returned installers is
chosen.

A few simplified code examples to illustrate how this all comes together:

def update(prefix=None):
 sources_context = SourcesContext(prefix=prefix)
 sources_context.ensure_cache_dir()

 database = RulesDatabase(sources_context)
 database.update()

def lookup(xylem_key, prefix=None, os_override=None):

 sources_context = SourcesContext(prefix=prefix)
 database = RulesDatabase(sources_context)
 database.load_from_cache()

 ic = InstallerContext(os_override=os_override)

 installer_dict = database.lookup(xylem_key, ic)
 return installer_dict

def resolve(xylem_keys, prefix=None, os_override=None, all_keys=False):

 sources_context = SourcesContext(prefix=prefix)

 database = RulesDatabase(sources_context)
 database.load_from_cache()

 ic = InstallerContext(os_override=os_override)

 if all_keys:
 xylem_keys = database.keys(ic)

 result = []

 for key in xylem_keys:

 installer_dict = database.lookup(key, ic)

 if not installer_dict:
 raise LookupError("Could not find rule for xylem key '{0}' on "
 "'{1}'.".format(key, ic.get_os_string()))

 rules = []
 for installer_name, rule in installer_dict.items():
 priority = ic.get_installer_priority(installer_name)
 if priority is None:
 debug("Ignoring installer '{0}' for resolution of '{1}' "
 "because it is not registered for '{2}'".
 format(installer_name, key, ic.get_os_string()))
 continue
 if 'priority' in rule:
 priority = rule['priority']

 installer = ic.get_installer(installer_name)
 resolutions = installer.resolve(rule)

 rules.append((priority, installer_name, resolutions))

 if not rules:
 debug("Could not find rule for xylem key '{0}' on '{1}' for "
 "registered installers '{2}'. Found rules for "
 "installers '{3}'. Ignoring from 'all' keys.".
 format(key, ic.get_os_string(),
 ", ".join(ic.get_installer_names()),
 ", ".join(installer_dict.keys())))
 else:
 rules.sort(reverse=True)
 result.append((key, rules))

 return sorted(result)

Notes:

	Should we consider allowing for the possibility of loading parsed (and
pickled) rules databases with the update command (for increased
speed of update)? Here the original rules files would always be
specified, but a binary version can be additionally added (somewhat
like in homebrew all formula need to specify the source to build them,
but some can additionally provide the binary package as a bottle).
	Nikolaus: I believe it actually has little value at the moment.

	Should rules plugins include an abstraction to tell if the database is
out of date (for a specific URL)? Something like comparing the last-
changed timestamp of the cached databased with the last-changed
timestamp of the online rules file. This might be used to speed up
update and also to determine whether to remind the user to call
update.

Considered design questions:

	When are the different rules sourced merged (including arbitration of
precedence)? During update, or while loading the cache database for
resolution? Do we keep all possible resolutions in the database, or
only the one that takes highest precedence?

	How is order of precedence defined between different rules plugins?
Only by the order of the rules files? Do platform support plugins play
a role in defining the precedence of different installers on a per-OS
or per-version basis? Can user settings influence the order of
precedence?

	Do we only support the cache model for sources, where a static rules
database is built with the update command, but no new information
is generated upon key resolution? This implies that rules sources that
query some other database format (rosdistro?) or online sources at
resolution time are not possible. In particular the rosdistro
plugin would generate a list of rules for all released packages upon
update (and not on-demand upon key resolution).

	What do the rules plugins return? The parsed rules from a given file
in a (clearly defined) rules database format (something like the
current dict database)? In any case the returned data should be in
some versioned format, to allow future extensions to that format. This
is probably the same format in which xylem keeps cached the
database.

Not considered for now:

	It has been considered to include source plugins that defines the
format / structure of the source files. We have for now decided
against it.

Default sources

The idea with default sources plugins is that robot vendors can provide
additional default sources including prepackaged cache such that even
those default sources work out of the box without initial update.
How exactly this is realized is tightly related to Sources and cache
location.

Commands

The top level command verbs to the xylem executable should be
plugins. These can pretty much define any new functionality. It is not
quite clear how exactly other plugins can interact with commands, e.g.
frontend plugins should somehow be able to extend the install verb.

These are the core commands:

	update to update the rules database

	If partial updates are supported, where only outdated rules files
are pulled, there should be an option to force updating everything.

	Needs to make sure to remove stale database cache files even on
partial update, which are no longer referenced from the source
files. Possibly add a clean command, that wipes the cache
completely.

	install to install packages (resolve + dependencies + installer
prerequisites checking)

	options: --reinstall, --simulate, --skip-keys,
--default-yes, --continue-on-error, --specified-only
(would this mean to not resolve dependencies on xylem level, or also
stop possible dependency resolution of package manager, if that is
even possible)

	check to check if packages installed

	options: --skip-keys, --continue-on-error, --specified-
only

	init-config to initialize config file, sources.list.d and
cache (possibly in custom location according to XYLEM_PREFIX). By
default the built- in default sources / config is copied to the new
location. Is a no-op with warning if sources / config is present.

options:

	--from-prefix to copy the config/sources that would be used with
this given prefix

	--from-system to copy the config/sources that would be used with
empty prefix

	--force to clear the config/sources even if they are present

These commands for dependency resolution could be useful:

	depends (options: --depth where 0 means no limit)

	depends-on (options: --depth where 0 means no limit)

There should also be some commands for checking how a key resolves on a
specific operating system, possibly listing alternative resolutions (pip
vs apt) highlighting the one that would be chosen with install. It
should also be possible to determine where these resolutions come from,
e.g. which source files.

	resolve -> resolve a key for os/version; no dependency resolution
/ prerequisites checking

	where-defined

Maybe something to query/change the configuration:

	config with the following arguments:
	--list-plugins to list all installed plugins (of all kinds)

	--list-sources list information about all sources that would be
considered during update

Notes:

	we might want to steal the alias mechanism from catkin_tools, but
that is maybe low priority, since xylem command invocations would
be much less frequent than catkin build invocations.

	there should be some options that tell the user why some key is needed
and why it was resolved the way it was resolved

Improvements over rosdep

In the following we elaborate on some of the concrete improvements over
rosdep listed above. Some of them are
far future, some should be implemented right away.

Sources and cache location

The xylem model of a lookup database cache that is updated with and
update command is somewhat analogous to apt-get. By default a
system-wide cache is maintained that needs to be updated with sudo.
We assume that many developer machines are single-user and/or are
maintained by an admin that ensures regular update invocations (e.g.
cronjob).

On top of the general scenario the following specific use-cases need to
be supported with regards to the database cache:

	xylem needs to allow users to maintain their own cache in their
home folder and use xylem independent from the system-wide
installation and without super user privileges.

	Robot vendors need to be able to add to the default sources
independently from the core xylem install and without post-
installation work.

	xylem needs to be functional out of the box after installation.
update requires internet connectivity, which is not given in some
lab/robot environments. Therefore we need to make sure that xylem
can be packaged (e.g. as debian) with a pre-generated binary cache.
This needs to be possible for the default sources bundled with
xylem as well as vendor supplied additional source files.

	Tools like bloom need to be able to create temporary caches
independent from the system wide install and without super-user
privileges.

We propose the following solution:

	Firstly, we assume that each URL/entry in the source files has it’s
own binary database cache file, all of which get merged upon lookup.

	The user can specify the XYLEM_PREFIX environment variable
(overwritten by a command line option, maybe --config-prefix or
-c). By default an empty prefix is assumed.

	The cache will live in <prefix>/var/cache/xylem and the sources in
<prefix>/etc/xylem/sources.d/. I.e. the default system wide
cache/source location is /var/cache/xylem /
/etc/xylem/sources.d, but the user can configure it to locally be
e.g. ~/.xylem/var/cache/xylem / .xylem/etc/xylem/sources.d.

	A xylem installation comes bundled with default source files and
default cache files. However, in particular the cache is not installed
into the /var/cache location directly.

	The init command installs the default sources and default cache
into the corresponding locations. There are command line options to
copy existing sources/cache from another prefix, but by default the
built-in files are used. The source files are only installed if they
are not present. The cache files are only installed, if the
corresponding source file was either not present, or was present and
identical to the default. Existing cache files are not overwritten.
There is a flag (maybe --force), that causes it to overwrite the
default files (sources and cache). Additional source files/cache files
are not overwritten.

	init is called as part of the post-installation work at least for
debians, maybe also pip? Note that this does not require internet
connection and sets up a working config and cache.

	The default source files could be handled as conffiles [http://raphaelhertzog.com/2010/09/21/debian-conffile-configuration-file-managed-by-dpkg/] in the debians, such that they are updated
upon apt-get upgrade, where the user is queried what should happen
if he has changed the default sources.

	update does not automatically use the the built-in sources if none
exist under the given prefix. However, if the default source files do
not exist, it warns the user and possibly tells him to call xylem
init (or even offers to call it). This warning can be disabled in
the settings for users that want to explicitly delete the default
config files.

	Robot vendors that want to supply additional default sources can hook
into init (with an entry point) and register their additional
default sources as well as binary caches. All the above mechanisms
work for those vendors. For example, if the additional vendor package
gets installed, a subsequent post-install init does recognize the
missing caches for installed default sources and installs them to
ensure out-of-the-box operation. Likewise, calling update in a
custom prefix after installing an additional vendor package will warn
the user, that some of the default sources are not installed and urge
her to call init, which will add these additional default sources
(and cache files), while not touching the existing default source
files from the core library.

For rosdep, there is pull request [https://github.com/ros-infrastructure/rosdep/pull/312] for a slightly different solution.
However, what we suggest addresses some of the remaining issues:

	(re-)installing from debs does not overwrite existing cache files.

	python2 and python3 debians can be installed side-by-side (at least if
the default source files are not handled as conffiles)

Notes:

	Should it be sources.list.d or sources.d? Note that we
probably change the source files from .list to .yaml, so does
sources.list.d still make sense?

	Can we ensure that the binary (pickled) database format is compatible
between python2 and python3?

	If the default files have been updated, and the user updates the xylem
installation, init will not change the existing default sources. Do we
need to / can we detect if they are unchanged and replace them
automatically if they are unchanged? If they are changed, ask the user
what to do (like debian conffile).

	Do the API calls respect the XYLEM_PREFIX environment variable or
need explicit setting of a prefix parameter? I think the latter.

	Dirk: For rosdistro we actually do the first approach -
the environment variable ROSDISTRO_INDEX_URL is also used for API
calls (if not overridden by passing a custom index url). I think
that approach has the advantage that any tool using rosdistro will
use the custom url when it is defined in the environment.

Wouldn’t it be kind of unexepcted if the command line tool xylem
uses the prefix from the environment but a different tools like
bloom falls back to a different default? Then you would also lack a
way to override the prefix for any tool using the API (or that tool
would need to expose a custom way to override the prefix).

	It was mentioned that the debian install needs to work out-of-the-box
“without any post-installation work”. Why exactly? Is post-install
work (like calling init) ok if it does not require internet
connectivity?

	Maybe the system wide settings file is also affected by
XYLEM_PREFIX, i.e. lives in <prefix>/etc/xylem/config?

	When using a user-local cache, locations like
~/.xylem/var/cache/xylem / .xylem/etc/xylem/sources.d are
somewhat suboptimal. If we want something like ~/.xylem/cache /
.xylem/sources.d, we would likely need separate XYLEM_SOURCES
and XYLEM_CACHE environment variables instead of or alternative to
XYLEM_PREFIX.

	Additional default sources could also be realized as plugins, which
provide source files as well as pickled cache files.

Settings and command line arguments

There should be a canonical way to supply arguments to xylem. We
propose a system-wide config file, a user config file and command line
options. The default settings might be captured on a config file that
comes with the installation (this would also give a reference for what
settings are available). The order of precedence of settings specified
multiple times is:

command line > user > system > default

We use yaml syntax for the configuration files, and suggest the
following locations:

	system: <prefix>/etc/xylem/config.yaml

	user: $HOME/.xylem.yaml

xylem tries to avoid the use of environment variables for
configuration. However, in order to allow users of tools like bloom
(that make use of the xylem API) to configure xylem, without having
those tools expose and pass through xylem-specific arguments, xylem
uses the XYLEM_CONFIG environment variable to optionally point to a
config file. There is also a CLI argument --config, with the same
effect. The CLI argument takes precedence. If a custom location for a
xylem config file is provided (via XYLEM_CONFIG or
--config), user and system config files are ignored. In that case
the order of precedence is:

command line > config file > default

All command line tools as well as API calls respect the configuration
files (either user > system > default or config file > default).
Default configuration can be achieved either by pointing
XYLEM_CONFIG/--config to an empty file or supplying the empty
string instead of a path.

Certain xylem plugins may respect environment variables, for example
the rosdistro spec plugin would by default respect the
ROSDISTRO_INDEX_URL environment variable.

Where it makes sense, options should be supported both by the CLI and
config files.

Command line arguments can be grouped in the following way:

	global command line arguments applicable to all commands such as
disable-plugins or os

	command specific command line arguments

	In order to achieve a good user experience, the command specific
options should be further grouped. For example, all commands that take
a list of keys as arguments, should do so in the same way, e.g.
offering skip-keys)

It has to be seen if and how either or both kinds of arguments can be
injected by plugins (e.g. frontend plugins inject new arguments to all
commands that take a list of keys as input).

It also needs to be possible to supply arguments to the
installer plugins (e.g. as-root or additional-arguments, see
rosdep#307 [https://github.com/ros-infrastructure/rosdep/pull/307#issuecomment-36572637]). Such options
may be passed down to those plugins via the InstallerContext. The
YAML format gives a lot of flexibility, but there should also be some
conventions (not necessarily enforced) to ensure that the plugins name
their options in a uniform way, such that it may even be possible and
reasonable to pass certain options to all installer plugins.

Notes:

	Should user file be in $HOME/.config/xylem.yaml, or even
$HOME/.config/xylem/config.yaml (see stackexchange.com [http://unix.stackexchange.com/questions/68721/where-should-user-configuration-files-go])? What about config locations on Windows?

Inter-key dependencies in rules files

In general, we rely on the package manager to install
dependencies for resolved keys. Dependencies between keys in rules files
is at the moment only used for the interplay between homebrew and pip on
OS X it seems. Should this be a general feature for rules to depend on
other keys? In particular if we reactivate the source installer this
would be needed. In particular when considering adding versions to the
rules files, doing dependency resolution right is not quite trivial I
guess.

Dependencies on other keys might be reasonable on different levels.
Currently they are part of the installer section, but maybe they could
be defined also at the rule level.

Notify user about outdated database

Ideally, if the source plugins can tell when they are outdated, we would
fork a process on every invocation to check if database is out of date
and inform the user that an update would be good on the next run. Maybe
limit the update check to only fire if the database has not been updated
for a certain amount of time (a day, a week, could be customizable).

Derivative operating systems

OS support e.g. for Ubuntu derivatives should be able to reuse most of
the rules for Ubuntu, but maybe overwrite certain rules.

We propose to let OS plugins define a list of increasingly specific
names. E.g. a Xubuntu os plugin might define the names debian,
ubuntu and xubuntu. The most specific name corresponds to the OS
name. It has to be considered that the version names of the less
specific OSs might not match the version names of the derivative. In our
example, xubuntu:trusty corresponds to ubuntu:trusty, but does
not have a (released-) version correspondence in Debian. Therefore,
instead of a list of OS names, os plugins specify a list of tuples of OS
names and versions. A None version indicates that there is no
version correspondence. In that case only any_version rules may
apply to the derivative. For example, the Xubuntu plugin might return
the following list of names/versions on Trusty: [("debian", None),
("ubuntu", "trusty"), ("xubuntu", "trusty")].

The lookup of rules is done in the following way: For a given list of OS
names and versions, lookup happens in such a way as if it was first done
based on only the names (not versions) independently for each of the
specified names (merging information from all sources). Then, the most
specific OS name for which some definition exists (no matter for which
OS version) is chosen as the sole definition. Only then is the according
OS version name considered.

For example, if we have the following rules

foo:
 debian: libfoo
bar:
 ubuntu:
 precise: libbar
 trusty: libbar
 xubuntu:
 trusty: libbar-x

then on xubuntu:trusty the resolutions are foo -> libfoo and
bar -> libbar-x, but on xubuntu:precise the key bar does not
resolve.

Versions in rules files

In general the user should expect a command xylem install boost to
install the latest version of boost on the given system, i.e. on
Ubuntu the version that apt-get install boost would install. For
some package managers, like apt for a specific Ubuntu release, this
might be always the same version of boost, for other package managers
such as pip or homebrew, this will always refer to the latest version.
This gives rise to two challenges with respect to software versions.
Firstly, at any given time the key boost refers to different
versions of the boost library on different platforms. Secondly, at two
different points in time the key boost refers to two different
versions of the boost library on the same platform. These challenges
need to be taken into consideration, since the goal of xylem is to
allow specification of dependencies in a uniform way that is robust over
time, i.e. can be supplied as part of install instructions today and
still be valid tomorrow.

At the moment, rosdep does not really consider versions, which users
find confusing in particular in conjunction with ROS packages that may
specify versioned dependencies (rosdep#325 [https://github.com/ros-infrastructure/rosdep/issues/325]).

In general we assume that package managers can only install one version
of a specific package at a time (largely true for apt, homebrew, pip).
We also assume that we never install a specific version of a package
with the package manager, but only the latest version, or possibly
upgrade an already installed package to the latest version.
Nevertheless, the package manager should be able to tell us, which
version of a package is installed and which version would be
installed/upgraded (i.e. the latest version on that platform).

For some libraries multiple incompatible major versions need to be
present at the same time. Here xylem follows suite with package
managers such as apt and homebrew and introduces new keys for the
specific versions (as rosdep does currently). For example, for Eigen
there are the version specific eigen2 and eigen3 keys, as well
as a general eigen key that points to the latest version (i.e. is
currently the same as eigen3).

What could be considered, is that xylem allows for input keys to be
associated with version requirements (==, <=, >= etc) and then check, if
the installed or would-be installed version matches. This would solve
the use case with ROS packages above, where there is a one-to-one
relation between xylem key and apt package. However, it is unclear how
the version is handled if a key resolves to 0 or more than 1 packages.
However, the most we would offer in terms of action is upgrading an
already installed package to the latest version, and informing the user
if a matching version cannot be achieved by upgrading or if the version
requirements are incompatible themselves (i.e. user installs foo and
bar, which depend on baz>1.0 and baz<1.0 respectively). Special care
needs to be taken to correctly merge multiple versioned resolutions of
the same key.

Another level of support for versions in rules would be to allow the
resolution rules themselves to be conditional on a version, e.g.
allowing to specify that eigen would resolve to libeigen2-dev or
libeigen3-dev, depending on the version. With this, the versioned
key eigen==2 and eigen==3 could be resolved at the same time.
Things could get really complicated and I’m not sure we want to go down
that route unless there is a good concrete use case where this is
beneficial.

Notes:

	check how package managers deal with versions, in particular the
capabilities (install multiple version of same package, install
specific version of package not only latest) and syntax for versioned
dependencies
	apt

	homebrew

	pip: https://pip.pypa.io/en/latest/user_guide.html#requirements-files, http://pythonhosted.org/setuptools/setuptools.html#declaring-dependencies

	python versions:
	http://legacy.python.org/dev/peps/pep-0386/

	http://pythonhosted.org//kitchen/api-versioning.html

	interesting blog about abstract vs concrete dependencies in python
https://caremad.io/blog/setup-vs-requirement/

OS options

OS plugins should have options that are configured in the xylem config
files. One example of such options are proposed OS “features” (another
is “core installers”, see Alternative resolutions). Features can be
either “active” or not. The config file contains a list of of active
features (all other features are inactive). For example, let us consider
the Ubuntu OS plugin. For recent Ubuntu versions there exist two
alternatives for each python package, one for python 2 and one for
python 3. For this example, let us assume that something similar would
hypothetically be the case for Ruby 2 and
3. Now if we want to use the latest and greatest, we might therefore put
in our /etc/xylem/config.yaml:

os_options:
 features: [python3, ruby3]

In this scenario the Ubuntu plugin defines features python3 and
ruby3 where their absence implies Python 2 and Ruby 2.

It (probably) does not make sense to define os features in a rules file
(like installer options), however, the OS plugins might choose to set
default features depending on OS version. For Ubuntu, python3 might
be active by default starting from a certain version. We therefore might
also add config options to activate or deactivate certain features (as
apposed to only defining the definitive list of features).

In rules files, we allow (optional) conditioning on the features at the
OS level. In a shorthand notation (which gets expanded) this might look
like the following:

rosdep:
 ubuntu: [python-rosdep]
 ubuntu & python3: [python3-rosdep]
 # note that the above is parsed as string "ubuntu & python3"

In order to keep things unambiguous, we need to ensure that in each file
and for each key/os-name, only at most one rule applies to a configured
set of features. In order to achieve this the list of features in os
dicts are interpreted in the following way: For a given set of feature
dependent os dict entries, we assume that any feature that appears in
any of the entries is relevant for all entries. I.e. in the above
example the ubuntu entry only applies when feature python3 is
not active, because it used in the next line for ubuntu & python3.
However, since ruby3 does not appear in any of the entries (in that
file, for that key/os), the two rules both apply to feature ruby3
active and inactive.

While we assume that in practice for each xylem key there is at most one
OS feature that is relevant, here is an example of a definition
involving two features:

mixed-python-ruby-pkg-foo:
 ubuntu: [python-ruby-foo]
 ubuntu & python3, ruby3: [python3-ruby3-foo]
 ubuntu & ruby3: [python-ruby3-foo]
 # note that the above is parsed as string "ubuntu & python3, ruby3"
 # python3-ruby-foo does not exist. List does not have to be exhaustive.

In the expanded rules dict, the feature conditions are organized in a
binary decision tree (built from valid YAML, but optimized for lookup).
Each inner node in the tree consists of a dict with at most 2 or 3
entries: feature mapping to the feature that is conditioned on in
this node and one or two of active and inactive, mapping to
subtrees for the corresponding decision. The leaves of the tree are
version dicts. Since in practice at most one feature is relevant each
key, this tree would have depth 0 or 1 for most keys. To illustrate the
structure, we show the expanded definition for the example with two
features:

mixed-python-ruby-pkg-foo:
 ubuntu:
 feature: python3
 active:
 feature: ruby3
 active:
 any_version:
 apt:
 packages: [python3-ruby3-foo]
 inactive:
 feature: ruby3
 active:
 any_version:
 apt:
 packages: [python-ruby3-foo]
 inactive:
 any_version:
 apt:
 packages: [python-ruby-foo]

For rules defintions not involving OS features the expaned definition is
unchanged, i.e. the version dict comes directly underneath the OS dict.

Here os another example to illustrate the features used are checked on a
per-file basis:

01-rules.yaml
mixed-python-ruby-pkg-foo:
 ubuntu: [python-foo]
02-rules.yaml
mixed-python-ruby-pkg-foo:
 ubuntu: [python-ruby-foo]
 ubuntu & python3, ruby3: [python3-ruby3-foo]
 ubuntu & ruby3: [python-ruby3-foo]
merged result:
mixed-python-ruby-pkg-foo:
 ubuntu: [python-foo]

In the above, the first file takes precedence for all cases, even though
it does not condition on any features. As explained above, the
unconditioned rule in the first file applies to all possible sets of
active features.

Notes:

	Nikolaus: I am open to suggestions for better compact syntax as
well as expanded data structure.

	We might also want to change the OS override syntax to specify
features, something like --os ubuntu:trusty&python3.

	An alternative proposal to support python 2 vs 3 rules on recent
Ubuntu was using derivative OSs,
but that doesn’t scale very well. Considering multiple alternatives
on the same OS, like the hypothetical Ruby 2 vs 3 in the example
above, is already awkward, but when this is mixed with actual
derivative OSs, it scales very poorly.

Considering the examlpe above, we might define the following
derivative OSs with listed names:

ubuntu => ['ubuntu']
ubuntu_py3 => ['ubuntu', 'ubuntu_py3']
ubuntu_rb3 => ['ubuntu', 'ubuntu_rb3']
ubuntu_py3_rb3 => ['ubuntu', 'ubuntu_py3', 'ubuntu_rb3', 'ubuntu_py3_rb3']

Now if I want to add an actual derivative OS like Xubuntu, I would
also have to add 4 variants:

xubuntu => ['ubuntu', 'xubuntu']
xubuntu_py3 => ['ubuntu', 'ubuntu_py3', 'xubuntu', 'xubuntu_py3']
xubuntu_rb3 => ['ubuntu', 'ubuntu_rb3', 'xubuntu', 'xubuntu_rb3']
xubuntu_py3_rb3 => ['ubuntu', 'ubuntu_py3', 'ubuntu_rb3', 'ubuntu_py3_rb3', 'xubuntu', 'xubuntu_py3', 'xubuntu_rb3', 'xubuntu_py3_rb3']

Note that with this approach we would also have to include some
setting in the config file to guide the os detection to choose the
appropriate variant.

Installer options

Installer options configure installer plugins. They can be defined in
config files or rules definitions. Definitions in the config files apply
to all rules (of that installer). Definitions in rules files only apply
to the rules for which they are defined. There is a shortcut to define
installer options in rules files that apply to every rule. As an example
we consider a set of options to the apt installer to support PPAs.

We would like to support custom PPAs for rules. With xylem being ROS-
independent, the apt installer plugin has no knowledge of the ROS
specific PPAs. We therefore define an option required_ppas, which
maps to a list of necessary ppas. This list can be populated from xylem
config files, or from xylem rules that are currently being resolved. For
installation, xylem would then first check that all the required PPAs
are installed and possibly offer to install missing ones, or at least
give meaningful instructions to the user.

The definition in a config file might look like this:

installer_options:
 apt:
 required_ppas: ["ppa:osrf/ros"]

An rule in an installer file might look like this:

python-rosdep:
 ubuntu:
 any_version:
 apt:
 packages: [python-rosdep]
 required_ppas: ["ppa:osrf/ros"]

Recognizing that a rules file might contain many apt rules for packages
from the same PPA, rules files may contain global definitions of options
for each installer. They act as if they are part of any rule of the
corresponding installer. For example, the above file with the single
python-rosdep entry can alternatively be written:

_installer_options:
 apt:
 required_ppas: ["ppa:osrf/ros"]
python-rosdep: [python-rosdep]

The leading underscore distinguishes _installer_options from xylem
keys and ensures that it appears at the top of the file. Having the PPA
requirement always be liked to the rules themselves is advantageous. If
none of the apt rules in a file with such installer options is part of
the set of resolutions of the current install command, then of
course the PPA requirement is not considered.

Support for mirrors could be added as another option, e.g.:

installer_options:
 apt:
 ppa_mirrors:
 "ppa:osrf/ros": ["ppa:freiburg/ros", "ppa:nyu/ros"]

Note that these mirrors could be defined in a config file, or again, in
the rules file.

Sometimes it might be convenient to not only provide alternative PPAs,
but actually replace a PPA with a different one, for example during
testing. A third installer option could achieve this:

installer_options:
 apt:
 replace_ppas:
 "ppa:osrf/ros": ["ppa:/ros-testing"]

Replacing PPAs with a list of 0 or more different PPAs also allows to
completely “disable” a PPA requirement without touching the rules files.

Something similar should be done for Taps for Homebrew. While it is
possible to reference the Tap with the formula name for installation
(brew install osrf/ros/foopkg), which should be supported for
specific packages.

Improved package manager abstraction

[TODO: these are only random thoughts. transform them into a coherent
and comprehensible description]

	support stuff like custom ppa’s for apt, taps for homebrew

	the ros-ppa should not be special in xylem

	possibly specified on a per-rules-file basis? (identify real world use
cases / needs)

	if custom ppa’s are supported, provide tools to list the ppa’s for
bunch of keys / rules sources

	rules should never specify the ppa location, but rather have some sort
of names prerequisite. this way the user could configure/overwrite the
prerequisite in the config file if he e.g. has a customized mirror of
that ppa or tap.

	issue of trust for the user (auto add alternavte pm sources? query
user?)

	issue of reliability of sources for the maintainer
	tool support to ensure ROS core packages are only using ubuntu or
osrf ppa?

	maybe the right abstraction is package manager prerequisites
	possibly not support undoing these prerequisites

	prerequisites should be performed before any packages is installed

	could query user or be automatic (with explicit option) or fail with
instructions to user

	allow user to configure and also skip specific or all prerequisite
checks.

	special prerequisite is the ‘availability’, which checks if the pm
is installed. This should be treated specially, because maybe the
selection of used package manager should depend on which is
installed (e.g. macports vs homebrew). Ability to list available
package managers

	maybe with the previous it makes sense to distinguish general
prerequisites (apt is installed and possibly up-to-date) and per-key
prerequisites (certain ppa is installed)

	concrete examples:
* apt: ppa installed
* source installer: tools installed (gcc etc)
* brew: homebrew installed, Tap tapped, brew –prefix on PATH
* pip: pip installed

Alternative resolutions

On a specific platform we want to allow alternative resolutions for the
same key. By default some order on these alternatives should determine
which resolution is chosen without user interaction. However, it should
be possible for the user to permanently or temporarily override that
order to install different alternatives.

For example on OS X we would like to offer installing packages either
from macports, or from homebrew / pip / gem. Similarly on Ubuntu python
packages are packaged with apt, but a user might prefer to install all
or certain python packages from pip instead.

We also have to consider that information for which installers are
available on each platform and what their priority is should come from
multiple sources: os plugins, installer plugins and the user
configuration.

We should consider the following use cases:

	The default scenario should be that the OS plugin defines a
preference on supported installers such that each key is resolved
uniquely in a way suitable for that platform.

	Installer plugins for platform independent package managers should be
able to specify additional installers independent from the OS
plugins. For example a new installer plugin for go get should be
available on all platforms without the need to update all OS plugins.
The installers take lower priority than the default installers for
that platform. They are independent from one-another and (by default)
don’t need arbitration between them. For example, the go get
installer does need have a relative priority to pip or gem.
Enabling support for new installers should be possible just by
installing the corresponding plugin and without additional user
configuration.

	Installer plugins might define installers that are supposed to be
used instead of the core installers defined by an OS plugin. For
example, someone might write a linuxbrew installer plugin and
want to use that on Ubuntu instead of apt. In that case the
installer needs to take higher priority than the OS plugin defined
core installers. Requiring user configuration for this rather rare
scenario is fine.

	The user wants to make a different choice for the core installers on
a platform where multiple alternatives are provided by xylem. For
example while by default the on OS X homebrew together with pip and
gem are used, an alternative is to use macports. In that case
homebrew should be deactivated completely, i.e. keys that are not
provided through macports should not be installed through homebrew,
and vice versa, by default keys not available on homebrew should not
be installed through macports. However it should still be possible to
set up xylem to use homebrew and fallback to macports, if the user
desires that. Requiring user configuration for anything non default
is fine.

	The user might want to specify the exact installer to use for specifc
keys. E.g. while she uses apt (as per default) on Ubuntu for python
packages, a given list of packages should still be installed through
pip. The user might do that through config-file / command-line or
custom rules file.

Initially, as described in the installer
plugin section, a system of real-valued priorities for installers was
devised. However it was deemed unnecessarily complex. In particular user
configuration should not deal with number-valued priorities for
installers.

The following therefore describes the newly proposed interplay of os
plugins, installer plugins, rules files and user config to address the
above use cases.

The os pluings define an ordered list of “core installers” that are used
on this operating system by default. The order determines which
installer is used, in case multiple resolutions for one key are
available. Moreover, installer plugins may register themselves as
“additional installers” for any or all OSs. To that end they define a
function that takes os name and version and returns a boolean that
indicates if the installer should be used as “additional installer”.
E.g. installers like pip might return True for all OSs. The
additional installers have arbitrary order/preference among themselves,
and lower priority than any of the core installers. If for the
resolution of a key there is the choice between multiple additional
installers, we might want to either raise an error, or make an arbitrary
choice (and possibly provide a warning). Any installers already present
in the list of core installers are ignored as “additional installers”.
This way of configuring core and additional installers should cover use
cases 1 and 2.

The user may furthermore override the list of core installers in her
config file. For example the following config file specifies that the
linuxbrew installer should be used with highest precedence, and
apt as a fallback, and thus supports use case 3 (see also OS
options):

os_options:
 installers: [linuxbrew, apt]

This still allows installer plugins to register themselves as additional
installers, i.e. python packages without resolutions for linuxbrew
nor apt can still be installed from pip with the above config. This
last part ensures the “no config” requirement of use case 2 (i.e. allow
an alternative set of core installers, while still automatically picking
up additional installers from newly installed installer plugins without
touching the config file).

The above also covers use case 4. In the example the OS plugin for OSX,
the core installers would be [homebrew] (pip and gem are
additional installers), and can be overwritten in the config file to be
[macports] by a macports user that does not want to use homebrew at
all. Neither macports nor homebrew would register themselves as
“additional” installers. More exotically, the user might also configure
[homebrew, pip, gem, macports] as core installers, to use macports
as a fallback for everything not available through homebrew/pip/gem.
Even with this setup, the user can take immediately use a newly
installer go get installer plugin without needing to touch her
config file.

To give the user ultimate control over which installers can be used, she
might specify that no “additional installers” should be used. With that,
the specified list of core installers is the definitive list of used
installers:

use_additional_installers: False

Lastly, we support use case 5, namely overrides for specific keys, in
two ways. Firstly, the user can specify a list of keys to install from
specific installers either in the config file

install_from:
 pip: [python-foo, python-bar]
 gem: [ruby-baz]

or on the command line:

xylem install some-pkg-with-deps --install-from="pip: [python-foo, python-bar]"

This is useful to quickly choose a different resolution for some keys,
where this resolution is already defined, but not the highest priority
with the current installer precedence setup.

A slightly different scenario is where one wants to override the
resolution for a specific key in a custom rules file and make sure that
this is the only rule, not merged with rules for other installers in
existing rules files. For example:

01-local-rules.yaml
foo:
 ubuntu:
 any_version:
 my_installer: ["libfoo"]
20-default-rules.yaml
...
foo:
 ubuntu:
 any_version:
 apt: ["libfoo"]
...

In this setup, the rules for my_installer and apt would get
merged upon lookup of foo. Since apt is the highest priority
installer on Ubuntu, xylem would always choose the apt rule. In order to
support true overriding of specific keys in local rules files (like is
currently possible in rosdep) in a way that does not require to also
list those keys in a config file, we propose a special disable
keyword for installer rules, which makes sure that a definition further
down the line is not merged. A special any_installer entry in the
installer dict can be used to disable all other installers. So in our
example the 01-local-rules.yaml can be written as either

foo:
 ubuntu:
 any_version:
 my_installer: ["libfoo"]
 apt:
 disable: True

or

foo:
 ubuntu:
 any_version:
 my_installer: ["libfoo"]
 any_installer:
 disable: True

to achieve the desired effect.

Note that on top of the above configuration possibilities, there are
also other ways in which power users might influence the list of
installers. E.g. one can provide a custom os plugin and disable to one
provided by xylem. The same can be done with installer plugins, to e.g.
write a custom plugin for the apt installer and disable the one
shipped with python. This last option allows to use all the existing
rules for apt while fully customizing how the apt packages are
actually installed (maybe someone wants to install all apt packages from
source for some reason). Having to write and replace plugins should
however not be the workflow for common use cases, which is granted by
the above proposal.

Notes:

	The xylem resolve command can optionally list all alternative
resolution and their order in order to debug.

	In the context of bloom, keep in mind that for debian releases only
apt dependencies are allowed, whereas e.g. homebrew formulae can also
depend on pip / gem).

Random points

	bring back the source installer

	improve windows situation; possibly source installer? windows 8 app
store :-)

	integrate/interact with http://robotpkg.openrobots.org somehow? Check
their solution for ideas for xylem.

	continue on error option for install

	authority on rules and versions

	restriction on the characters used in xylem keys, os names, installer
names, version strings: alphanumeric, period, dash, underscore. Is
this too restrictive? Reserved names such as any_os, any_version,
default_installer...

	for the rosdistro plugin, there should be a more meaningful error
message when an operating system is not supported (it should not just
be “key not resolved”, nor should it simply try to install non-
existent packages (and fail) like it does now on homebrew)

	before releasing, carefully consider security and ability for plugins
to override completely what is installed from sources

	consider migration path ros-package -> system dependencies (in light
of xylem supporting multiple ros distros)
http://answers.ros.org/question/173773/depend-on-opencv-in-hydro/

	Look at Chef cookbook
http://answers.ros.org/question/174507/is-there-interest-in-maintaining-chef-cookbooks-for-ros/

Terminology

[TODO: Define terms]

	xylem key

	key database

	rules file

	installer

	package manager

	platform –> os/version tuple

	installer

	installer context

	package -> pm package

	rules dict, os dict, version dict, installer dict, installer rule

	rules database (contains merged rules dict)

	rules source (entry in sources file, contains spec plugin name and
data, typically url, must should have unique identifier)

	cache -> version, datetime, must be reproducible for the unique
identifier

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

xylem Rules files

Notes

	Rules files compacted with this syntax can be found here:
https://github.com/NikolausDemmel/rosdistro/tree/xylem/rosdep

	With the proposed rules files the following entries are not valid any
more. homebrew is interpreted as a version of osx and packages
as the package-manager. No detection of this problem happens at the
moment:

boost:
 osx:
 homebrew:
 packages: [boost]

Correct would be:

boost:
 osx:
 any_version:
 homebrew:
 packages: [boost]

	'any_version' is somewhat limited in some cases:

gazebo:
 ubuntu:
 precise: [gazebo]
 quantal: [gazebo]
 raring: [gazebo]
 saucy: [gazebo2]
 trusty: [gazebo2]

Using any_version for saucy and trusty does not contain
information from which version the rule has been tested/confirmed. In
this case it would also apply to precise, whereas the explicit
list above would give a more meaningful error on precise (“No rules
definition” instead of “Failed to install apt package gazebo2”).

	Here is another limitation, where rules for all versions but the
latest are the same:

ffmpeg:
 ubuntu:
 lucid: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 maverick: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 natty: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 oneiric: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 precise: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 quantal: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 raring: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 saucy: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 trusty: [libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]

We might want to allow tuple/list/set as version dict key or maybe
range of versions 'lucid - saucy' to alleviate that problem.

	For implementing verions ranges part of the problem is that versions
are not known and cannot be listed, only detected. Can we change that
easily? OS plugins could list all known versions, but that would
require adding any new version explicitly. Maybe not so bad?

	Should special keys have special syntax like *any_os* or similar?
+ Nikolaus: IMHO no

any_version and version ranges

The above notes mention some problems with the initial proposal for
any_version.

Firstly, any_version applies to all version, even old ones for which
it the rule has not been tested. any_version is often used to make
sure the rule applies to any newly released versions and therefore used
instead of a definition for the currently latest version. This makes
sure that when a new OS version is released, only the keys for which the
rule actually has to change need to be touched in the rules file. At the
moment it is not possible to express a minimal version for which the
any_version rule is valid. Therefore, replacing a list of explicit
definitions for each version with a any_version rule actually loses
information.

Secondly, in the above example of ffmpeg, only the latest version
has changed. Since we want to use any_version for the latest
version, we have to retain the repeated explicit definition for all
other versions (which are identical).

We propose the following two changes to alleviate those problems.

any_version with greater or equal condition

Firstly, the dictionary underneath any_version may optionally have a
key version_geq mapping to a minimal version to which the rule
applies. The installer dict is then pushed down one level accessed by a
installers key. For example:

gazebo:
 ubuntu:
 precise: [gazebo]
 quantal: [gazebo]
 raring: [gazebo]
 any_version:
 version_geq: saucy
 installers:
 apt:
 packages: [gazebo2]

There exists a short notation without the intermediary dictionary:

gazebo:
 ubuntu:
 precise: [gazebo]
 quantal: [gazebo]
 raring: [gazebo]
 any_version>=saucy: [gazebo2]
 # note that the above is parsed as string "any_version>=saucy"

gazebo:
 ubuntu:
 precise: [gazebo]
 quantal: [gazebo]
 raring: [gazebo]
 any_version>=saucy:
 apt:
 packages: [gazebo2]

The both of the above shorthands expand to the initial example. There is
also a short notation at the os dict level:

gazebo:
 ubuntu>=saucy: [gazebo2]

which expands to:

gazebo:
 ubuntu:
 any_version:
 version_geq: saucy
 installers:
 apt:
 packages: [gazebo2]

This means that for rule lookup the order on versions needs to be known.
Therefore, each os plugin needs to provide an order over its version
strings. For systems like OS X, that implies listing all known versions
in the OS plugin.

Note that the order is not needed for rules file expansion.

Multiple versions in one defintion

We allow to define multiple versions in one definition by allowing the
keys in the version dict to be a comma separated list of versions (as a
string). Upon rule expansion the definitions are separated as one
definition for each listed version. We do not provide a way to specify
version ranges (like precise - saucy) to keep the implied versions
explicit. This also helps to not require the list of all versions for
rule expansion.

For example, the ffmpeg definition can be compacted as:

ffmpeg:
 ubuntu:
 any_version>=trusty: [libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 lucid, maverick, natty, oneiric, precise, quantal, raring, saucy: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]

which expands to:

ffmpeg:
 ubuntu:
 any_version>=trusty: [libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 lucid: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 maverick: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 natty: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 oneiric: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 precise: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 quantal: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 raring: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]
 saucy: [ffmpeg, libavcodec-dev, libavformat-dev, libavutil-dev, libswscale-dev]

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

xylem Python API

Experimental: the xylem Python library is still unstable.

The xylem Python module supports both the xylem
command-line tool as well as libraries that wish to use xylem data
files to resolve dependencies.

As a developer, you may wish to extend xylem to add new OS
platforms or package managers.

Table of Contents

	xylem Python API
	Database

	Indices and tables

Database

Implements the update functionality.

This includes the functions to collect and process source files. Part of
this process is to load and run the spec parser, which are given by name
in the source files.

	
xylem.update.update(prefix=None, dry_run=False)

	Update the xylem cache.

If the prefix is set then the source lists are searched for in the
prefix. If the prefix is not set (None) or the source lists are not
found in the prefix, then the default, builtin source list is used.

	Parameters:	
	prefix (str [http://docs.python.org/library/functions.html#str] or None [http://docs.python.org/library/constants.html#None]) – The config and cache prefix, usually ‘/’ or someother
prefix

	dry_run (bool [http://docs.python.org/library/functions.html#bool]) – If True, then no actual action is taken, only
pretend to

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

xylem

	xylem package
	Subpackages
	xylem.commands package
	Submodules

	xylem.commands.lookup module

	xylem.commands.main module

	xylem.commands.resolve module

	xylem.commands.update module

	Module contents

	xylem.installers package
	Subpackages

	Submodules

	xylem.installers.impl module

	xylem.installers.package_manager_installer module

	Module contents

	xylem.os_support package
	Submodules

	xylem.os_support.impl module

	xylem.os_support.os_detect module

	xylem.os_support.plugins module

	Module contents

	xylem.sources package
	Submodules

	xylem.sources.database module

	xylem.sources.impl module

	xylem.sources.rules_dict module

	Module contents

	xylem.specs package
	Submodules

	xylem.specs.impl module

	xylem.specs.rules module

	Module contents

	Submodules

	xylem.exception module

	xylem.load_url module

	xylem.log_utils module

	xylem.lookup module

	xylem.plugin_utils module

	xylem.resolve module

	xylem.terminal_color module

	xylem.text_utils module

	xylem.update module

	xylem.util module

	Module contents

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem

xylem package

Subpackages

	xylem.commands package
	Submodules

	xylem.commands.lookup module

	xylem.commands.main module

	xylem.commands.resolve module

	xylem.commands.update module

	Module contents

	xylem.installers package
	Subpackages
	xylem.installers.plugins package
	Submodules

	xylem.installers.plugins.fake module

	xylem.installers.plugins.homebrew module

	xylem.installers.plugins.macports module

	xylem.installers.plugins.pip module

	Module contents

	Submodules

	xylem.installers.impl module

	xylem.installers.package_manager_installer module

	Module contents

	xylem.os_support package
	Submodules

	xylem.os_support.impl module

	xylem.os_support.os_detect module

	xylem.os_support.plugins module

	Module contents

	xylem.sources package
	Submodules

	xylem.sources.database module

	xylem.sources.impl module

	xylem.sources.rules_dict module

	Module contents

	xylem.specs package
	Submodules

	xylem.specs.impl module

	xylem.specs.rules module

	Module contents

Submodules

xylem.exception module

Exception classes for error handling xylem.

	
exception xylem.exception.DownloadFailure

	Bases: builtins.Exception

Failure downloading data for I/O or other reasons.

	
exception xylem.exception.InstallerNotAvailable

	Bases: builtins.Exception

Failure indicating a installer is not installed.

	
exception xylem.exception.InvalidDataError

	Bases: builtins.Exception

Data is not in valid xylem format.

	
exception xylem.exception.InvalidPluginError

	Bases: builtins.Exception

Plugin loaded from an entry point does not have the right type/data.

xylem.load_url module

Helper to download content from url.

	
xylem.load_url.load_url(url, retry=2, retry_period=1, timeout=10)

	Load a given url with retries, retry_periods, and timeouts.

	Parameters:	
	url (str [http://docs.python.org/library/functions.html#str]) – URL to load and return contents of

	retry (int [http://docs.python.org/library/functions.html#int]) – number of times to retry the url on 503 or timeout

	retry_period (float [http://docs.python.org/library/functions.html#float]) – time to wait between retries in seconds

	timeout (float [http://docs.python.org/library/functions.html#float]) – timeout for opening the URL in seconds

	Retunrs:	loaded data as string

	Return type:	str

	Raises DownloadFailure:

		if loading fails even after retries

xylem.log_utils module

	
xylem.log_utils.debug(msg, file=None, *args, **kwargs)

	Print debug to console or file.

Works like print() [http://docs.python.org/library/functions.html#print], optionally uses terminal colors and
tries to handle unicode correctly by encoding to utf-8 before
printing. Can be enabled or disabled with
enable_debug().

	
xylem.log_utils.enable_debug(state=True)

	En- or disable printing debug output to console.

	
xylem.log_utils.enable_verbose(state=True)

	En- or disable printing verbose output to console.

	
xylem.log_utils.error(msg, file=None, exit=False, *args, **kwargs)

	Print error statement and optionally exit.

Works like print() [http://docs.python.org/library/functions.html#print], optionally uses terminal colors and
tries to handle unicode correctly by encoding to utf-8 before
printing.

	
xylem.log_utils.info(msg, file=None, *args, **kwargs)

	Print info to console or file.

Works like print() [http://docs.python.org/library/functions.html#print], optionally uses terminal colors and
tries to handle unicode correctly by encoding to utf-8 before
printing.

	
xylem.log_utils.is_debug()

	Return true if xylem is set to debug console output.

	
xylem.log_utils.is_verbose()

	Return true if xylem is set to verbose console output.

	
xylem.log_utils.warning(msg, file=None, *args, **kwargs)

	Print warning to console or file.

Works like print() [http://docs.python.org/library/functions.html#print], optionally uses terminal colors and
tries to handle unicode correctly by encoding to utf-8 before
printing. Can be enabled or disabled with
enable_debug().

xylem.lookup module

xylem.plugin_utils module

Helpers for loading plugin definitions.

	
class xylem.plugin_utils.PluginBase

	Bases: builtins.object

Abstract base class for all plugin classes.

Plugin classes must define the name property. This name is used
in other parts of the system. For example for installer plugins the
installer name "apt" is used in rules definitions. The name of
plugin classes is distinct from the plugin name from the plugin
definition. The latter is only used to refer to the plugin
definitions themselves and (de-)activate specific plugins. All
loaded plugins of one kind are unique by the plugin class name.

	
name

	Name of the plugin object.

	
xylem.plugin_utils.get_plugin_list(kind, base_class, group)

	Load plugins form entry points.

Load the plugins of given kind from entry points group,
instantiating objects and ignoring duplicates. The entry points must
be valid plugin definitions (see verify_plugin_definition()).
The list of plugins is free of duplicates by plugin class name (not
plugin name).

	Parameters:	
	kind (str [http://docs.python.org/library/functions.html#str]) – kind of plugin (e.g. “installer”)

	base_class – (abstract) base class plugins (must implement
PluginBase)

	group – entry point group to load plugins from

	Returns:	list of the loaded and instantiated plugin classes

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
xylem.plugin_utils.verify_plugin_class(class_, base_class)

	Verify class from plugin definition.

	Raises ValueError:

		if class is invalid

	
xylem.plugin_utils.verify_plugin_definition(definition, kind, base_class)

	Verify plugin definition.

	Parameters:	
	definition (dict [http://docs.python.org/library/stdtypes.html#dict]) – definition of plugin as loaded from entry point

	kind (str [http://docs.python.org/library/functions.html#str]) – kind of plugin (e.g. “installer”)

	base_class (type [http://docs.python.org/library/functions.html#type]) – (abstract) base class plugins must derive from

	Raises InvalidPluginError:

		if plugin definition is invalid

	
xylem.plugin_utils.verify_plugin_description(decription)

	Verify decription from plugin definition.

	Raises ValueError:

		if decription is invalid

	
xylem.plugin_utils.verify_plugin_name(name)

	Verify name from plugin definition.

	Raises ValueError:

		if name is invalid

xylem.resolve module

	
xylem.resolve.resolve(xylem_keys, prefix=None, os_override=None, all_keys=False)

	

xylem.terminal_color module

Module to enable color terminal output.

	
class xylem.terminal_color.ColorTemplate(template)

	Bases: string.Template [http://docs.python.org/library/string.html#string.Template]

	
delimiter = '@'

	

	
pattern = re.compile('\n \\@(?:\n (?P<escaped>\\@) | # Escape sequence of two delimiters\n (?P<named>[_a-z][_a-z0-9]*) | # delimiter and a Python identifier\n {(?P<braced>[_a-z][_a-z0-9]*)} | , re.IGNORECASE|re.VERBOSE)

	

	
xylem.terminal_color.ansi(key)

	Return the escape sequence for a given ansi color key.

	
xylem.terminal_color.disable_ANSI_colors()

	Disable output of ANSI color serquences with ansi().

Set all the ANSI escape sequences to empty strings, which
effectively disables console colors.

	
xylem.terminal_color.enable_ANSI_colors()

	Enable output of ANSI color serquences with ansi().

Colors are enabled by populating the global module dictionary
_ansi with ANSI escape sequences.

	
xylem.terminal_color.fmt(msg)

	Replace color annotations with ansi escape sequences.

	
xylem.terminal_color.sanitize(msg)

	Sanitize the existing msg, use before adding color annotations.

xylem.text_utils module

Utility module for dealing with unicode/str/bytes in a uniform way.

This has been inspired by parts of the kitchen package, which is not
py3 compatible to date.

	
xylem.text_utils.to_bytes(obj, encoding='utf-8', errors='replace')

	Helper for converting to encoded byte-strings in py2 and py3.

	
xylem.text_utils.to_str(obj, encoding='utf-8', errors='replace')

	Helper for converting to (unicode) text in py2 and py3.

xylem.update module

Implements the update functionality.

This includes the functions to collect and process source files. Part of
this process is to load and run the spec parser, which are given by name
in the source files.

	
xylem.update.update(prefix=None, dry_run=False)

	Update the xylem cache.

If the prefix is set then the source lists are searched for in the
prefix. If the prefix is not set (None) or the source lists are not
found in the prefix, then the default, builtin source list is used.

	Parameters:	
	prefix (str [http://docs.python.org/library/functions.html#str] or None [http://docs.python.org/library/constants.html#None]) – The config and cache prefix, usually ‘/’ or someother
prefix

	dry_run (bool [http://docs.python.org/library/functions.html#bool]) – If True, then no actual action is taken, only
pretend to

xylem.util module

Provides common utility functions for xylem.

	
xylem.util.add_global_arguments(parser)

	

	
class xylem.util.change_directory(directory='')

	Bases: builtins.object

	
xylem.util.create_temporary_directory(prefix_dir=None)

	Create a temporary directory and return its location.

	
xylem.util.custom_exception_handler(type, value, tb)

	

	
xylem.util.dump_yaml(data, inline=False)

	Dump data to unicode string.

	
xylem.util.handle_global_arguments(args)

	

	
xylem.util.load_yaml(data)

	Parse a unicode string containing yaml.

This calls yaml.load(data) but makes sure unicode is handled correctly.

See yaml.load().

	Raises yaml.YAMLError:

		if parsing fails

	
xylem.util.pdb_hook()

	

	
xylem.util.print_exc(formated_exc)

	

	
xylem.util.raise_from(exc_type, exc_args, from_exc)

	Raise new exception directly caused by from_exc.

On py3, this is equivalent to raise exc_type(exc_args) from
from_exc and on py2 the messages are composed manually to retain
the arguments of from_exc as well as the stack trace.

	
xylem.util.read_stdout(cmd)

	

	
class xylem.util.redirected_stdio

	Bases: builtins.object

	
class xylem.util.temporary_directory(prefix='')

	Bases: builtins.object

Module contents

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem

 	xylem package

xylem.commands package

Submodules

xylem.commands.lookup module

xylem.commands.main module

	
xylem.commands.main.create_subparsers(parser, cmds)

	

	
xylem.commands.main.list_commands()

	

	
xylem.commands.main.load_command_description(command_name)

	

	
xylem.commands.main.main(sysargs=None)

	

	
xylem.commands.main.print_usage()

	

xylem.commands.resolve module

	
xylem.commands.resolve.main(args=None)

	

	
xylem.commands.resolve.parse_os_tuple(os_arg)

	

	
xylem.commands.resolve.prepare_arguments(parser)

	

xylem.commands.update module

	
xylem.commands.update.main(args=None)

	

	
xylem.commands.update.prepare_arguments(parser)

	

Module contents

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem

 	xylem package

xylem.installers package

Subpackages

	xylem.installers.plugins package
	Submodules

	xylem.installers.plugins.fake module

	xylem.installers.plugins.homebrew module

	xylem.installers.plugins.macports module

	xylem.installers.plugins.pip module

	Module contents

Submodules

xylem.installers.impl module

	
class xylem.installers.impl.Installer

	Bases: builtins.object

Installer class that custom installer plugins derive from.

The Installer API is designed around opaque resolved
parameters. These parameters can be any type of sequence object,
but they must obey set arithmetic. They should also implement
__str__() methods so they can be pretty printed.

	
get_depends(rule_args)

	Get list list of dependencies on other xylem keys.

	Parameters:	rule_args (dict [http://docs.python.org/library/stdtypes.html#dict]) – argument dictionary to the xylem rule for
this package manager

	Returns:	List of dependencies on other xylem keys. Only
necessary if the package manager doesn’t handle
dependencies.

	Return type:	list of str

	
get_install_command(resolved, interactive=True, reinstall=False)

	Get command line invocations to install list of items.

	Parameters:	
	resolved – [resolution]. List of opaque resolved
installation items

	interactive – If False [http://docs.python.org/library/constants.html#False], disable interactive prompts,
e.g. pass through -y or equivalent to package manager.

	reinstall – If True, install everything even if
already installed

	Returns:	List of commands, each command being a list of strings.

	Return type:	[[str]]

	
static get_name()

	Get the name of the installer this class implements.

This is the name that is referenced in the rules files, user
configuration or OS plugins. There may only be one installer for
a any given name at runtime, i.e. plugins defining installers
with existing names might be ignored.

	Return str:	installer name

	
get_priority_for_os(os_name, os_version)

	Get the priority of this installer according to installer plugin.

Given an OS name/version tuple, the installer can declare that
it should be used on that OS with the returned priority. If the
installer does not want to declare itself for this OS, None is
returned.

	Return type:	number or None

	
is_installed(resolved_item)

	Check if single opaque installation item is installed.

	Parameters:	resolved_item – single opaque resolved installation item

	Returns:	True if all of the resolved items are installed
on the local system

	
resolve(rule_args)

	Return list of resolutions from rules dictionary entry.

	Parameters:	rule_args (dict [http://docs.python.org/library/stdtypes.html#dict]) – argument dictionary to the xylem rule for
this package manager

	Returns:	[resolution]. Resolved objects should be printable to
a user, but are otherwise opaque.

	
class xylem.installers.impl.InstallerContext(setup_installers=True, os_override=None)

	Bases: builtins.object

InstallerContext manages the context of execution for xylem.

It combines OS plugins, installer plugins and user settings to
manage the current OS, installers to be used including their
priorities.

	
get_default_installer_name()

	Get name of default installer for current os.

setup_installers() needs to be called beforehand.

	
get_installer(name)

	Get installer object by name.

	
get_installer_names()

	Get all configured installers for current os.

setup_installers() needs to be called beforehand.

	
get_installer_priority(name)

	Get configured priority for specific installer and current os.

setup_installers() needs to be called beforehand.

	
get_os_string()

	Get the OS name and version as ‘name:version’ string.

See get_os_tuple()

	Return type:	str

	Raises UnsupportedOsError:

		if OS was not detected correctly

	
get_os_tuple()

	Get the OS (name,version) tuple.

Return the OS name/version tuple to use for resolution and
installation. This will be the detected OS name/version unless
InstallerContext.set_os_override() has been called.

	Returns:	(os_name, os_version)

	Return type:	(str,str)

	Raises UnsupportedOsError:

		if OS was not detected correctly

	
set_os_override(os_tuple)

	Override the OS detector with os_name and os_version.

See InstallerContext.detect_os().

	Parameters:	os_name ((str,str)) – OS (name,version) tuple to use

	Raises UnsupportedOsError:

		if os override was invalid

	
setup_installers()

	For current os, setup configured installers.

Installers are set up with their priorities for the current os
and based on user config, os plugins and installer plugins.

	
xylem.installers.impl.get_installer_plugin_list()

	Return list of Installer plugin objects unique by name.

Load the Installer plugin descriptions from entry points,
instantiating objects and ignoring duplicates (by
Installer.get_name(), not entry point name).

	Returns:	list of the loaded plugin objects

	Raises InvalidPluginError:

		if one of the loaded plugins is invalid

	
xylem.installers.impl.load_installer_plugin(entry_point)

	Load Installer plugin from entry point.

	Parameters:	entry_point – entry point object from pkg_resources

xylem.installers.package_manager_installer module

	
class xylem.installers.package_manager_installer.PackageManagerInstaller(detect_fn, supports_depends=False)

	Bases: xylem.installers.impl.Installer

Base class from a variety of package manager installers.

General form of a package manager Installer implementation
that assumes:

	installer rule-args spec is a list of package names stored with
the key “packages”

	a detect function exists that given a list of packages, returns a
list of the installed packages

Also, if supports_depends is set to True:

	installer rule-args spec can also include dependency
specification with the key “depends”

Subclasses need to provide implementation of
get_install_command.

In addition, if subclass provide their own resolve method, the
resolved items need not be package names (i.e. strings). Methods
other than get_isntall_command, resolve and the
detect_fn treat the resolved items as opaque objects.

	
get_depends(rule_args)

	Get list list of dependencies on other xylem keys.

	Parameters:	rule_args (dict [http://docs.python.org/library/stdtypes.html#dict]) – argument dictionary to the xylem rule for
this package manager

	Returns:	List of dependencies on other xylem keys read from the
‘depends’ key in rule_args if self.supports_depends is
True [http://docs.python.org/library/constants.html#True].

	
get_packages_to_install(resolved, reinstall=False)

	

	
is_installed(resolved_item)

	

	
resolve(rules_args)

	See Installer.resolve().

Module contents

	
class xylem.installers.InstallerContext(setup_installers=True, os_override=None)

	Bases: builtins.object

InstallerContext manages the context of execution for xylem.

It combines OS plugins, installer plugins and user settings to
manage the current OS, installers to be used including their
priorities.

	
get_default_installer_name()

	Get name of default installer for current os.

setup_installers() needs to be called beforehand.

	
get_installer(name)

	Get installer object by name.

	
get_installer_names()

	Get all configured installers for current os.

setup_installers() needs to be called beforehand.

	
get_installer_priority(name)

	Get configured priority for specific installer and current os.

setup_installers() needs to be called beforehand.

	
get_os_string()

	Get the OS name and version as ‘name:version’ string.

See get_os_tuple()

	Return type:	str

	Raises UnsupportedOsError:

		if OS was not detected correctly

	
get_os_tuple()

	Get the OS (name,version) tuple.

Return the OS name/version tuple to use for resolution and
installation. This will be the detected OS name/version unless
InstallerContext.set_os_override() has been called.

	Returns:	(os_name, os_version)

	Return type:	(str,str)

	Raises UnsupportedOsError:

		if OS was not detected correctly

	
set_os_override(os_tuple)

	Override the OS detector with os_name and os_version.

See InstallerContext.detect_os().

	Parameters:	os_name ((str,str)) – OS (name,version) tuple to use

	Raises UnsupportedOsError:

		if os override was invalid

	
setup_installers()

	For current os, setup configured installers.

Installers are set up with their priorities for the current os
and based on user config, os plugins and installer plugins.

	
class xylem.installers.Installer

	Bases: builtins.object

Installer class that custom installer plugins derive from.

The Installer API is designed around opaque resolved
parameters. These parameters can be any type of sequence object,
but they must obey set arithmetic. They should also implement
__str__() methods so they can be pretty printed.

	
get_depends(rule_args)

	Get list list of dependencies on other xylem keys.

	Parameters:	rule_args (dict [http://docs.python.org/library/stdtypes.html#dict]) – argument dictionary to the xylem rule for
this package manager

	Returns:	List of dependencies on other xylem keys. Only
necessary if the package manager doesn’t handle
dependencies.

	Return type:	list of str

	
get_install_command(resolved, interactive=True, reinstall=False)

	Get command line invocations to install list of items.

	Parameters:	
	resolved – [resolution]. List of opaque resolved
installation items

	interactive – If False [http://docs.python.org/library/constants.html#False], disable interactive prompts,
e.g. pass through -y or equivalent to package manager.

	reinstall – If True, install everything even if
already installed

	Returns:	List of commands, each command being a list of strings.

	Return type:	[[str]]

	
static get_name()

	Get the name of the installer this class implements.

This is the name that is referenced in the rules files, user
configuration or OS plugins. There may only be one installer for
a any given name at runtime, i.e. plugins defining installers
with existing names might be ignored.

	Return str:	installer name

	
get_priority_for_os(os_name, os_version)

	Get the priority of this installer according to installer plugin.

Given an OS name/version tuple, the installer can declare that
it should be used on that OS with the returned priority. If the
installer does not want to declare itself for this OS, None is
returned.

	Return type:	number or None

	
is_installed(resolved_item)

	Check if single opaque installation item is installed.

	Parameters:	resolved_item – single opaque resolved installation item

	Returns:	True if all of the resolved items are installed
on the local system

	
resolve(rule_args)

	Return list of resolutions from rules dictionary entry.

	Parameters:	rule_args (dict [http://docs.python.org/library/stdtypes.html#dict]) – argument dictionary to the xylem rule for
this package manager

	Returns:	[resolution]. Resolved objects should be printable to
a user, but are otherwise opaque.

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem

 	xylem package

 	xylem.installers package

xylem.installers.plugins package

Submodules

xylem.installers.plugins.fake module

This is a fake installer plugin for testing.

It is able to install any package and ‘installs’/’removes’ packages by
touching/removing files in a folder.

	var INSTALL_LOCATION:

		the installation folder

	var definition:	definition of the installer plugin to be referenced
by the according entry point

	
class xylem.installers.plugins.fake.FakeInstaller

	Bases: xylem.installers.package_manager_installer.PackageManagerInstaller

FakeInstaller class for testing.

The opaque installer items are simply strings (package names).

Packages are installed by touching files in INSTALL_LOCATION. The
folder must exist, else installation fails and all packages are
assumed uninstalled.

	
get_install_command(resolved, interactive=True, reinstall=False)

	

	
static get_name()

	

	
xylem.installers.plugins.fake.detect_fn(resolved)

	Return list of subset of installed packages.

	
xylem.installers.plugins.fake.get_installer_filename(resolved_item)

	Return the location of the file indicating installation of item.

xylem.installers.plugins.homebrew module

TODO: Describe and implement this

	var definition:	definition of the installer plugin to be referenced
by the according entry point

	
class xylem.installers.plugins.homebrew.HomebrewInstaller

	Bases: xylem.installers.package_manager_installer.PackageManagerInstaller

	
get_install_command(resolved, interactive=True, reinstall=False)

	

	
static get_name()

	

	
xylem.installers.plugins.homebrew.fixme_detect(pkgs, exec_fn=None)

	

xylem.installers.plugins.macports module

TODO: Describe and implement this

	var definition:	definition of the installer plugin to be referenced
by the according entry point

	
class xylem.installers.plugins.macports.MacportsInstaller

	Bases: xylem.installers.package_manager_installer.PackageManagerInstaller

	
get_install_command(resolved, interactive=True, reinstall=False)

	

	
static get_name()

	

	
xylem.installers.plugins.macports.fixme_detect(pkgs, exec_fn=None)

	

xylem.installers.plugins.pip module

This is a installer plugin for the pip python package manager.

See https://pypi.python.org/pypi/pip

	var definition:	definition of the installer plugin to be referenced
by the according entry point

	
class xylem.installers.plugins.pip.PipInstaller

	Bases: xylem.installers.package_manager_installer.PackageManagerInstaller

Installer support for pip.

	
get_install_command(resolved, interactive=True, reinstall=False)

	

	
static get_name()

	

	
get_priority_for_os(os_name, os_version)

	

	
xylem.installers.plugins.pip.is_pip_installed()

	Return True if ‘pip’ can be executed.

	
xylem.installers.plugins.pip.pip_detect(pkgs, exec_fn=None)

	Given a list of package, return the list of installed packages.

	Parameters:	exec_fn – function to execute Popen and read stdout (for testing)

Module contents

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem

 	xylem package

xylem.os_support package

Submodules

xylem.os_support.impl module

	
class xylem.os_support.impl.OS

	Bases: builtins.object

Abstract OS plugin base class.

OS plugins should define entry points as classes derived from this.

Operating systems are described by a list of increasingly specific
names, where the most specific of those is referred to as the name
of the operating system. The description furthermore includes a
operating system version, which can be a version number string or
code name.

Operating systems can name their default installer and furthermore
list additional applicable installer names, each with a number as
priority (higher number take precedence).

	
get_default_installer_name()

	Get name of default installer as described by OS plugin.

	Return type:	str

	
get_installer_priority(installer_name)

	Get priority of installer as described by OS plugin.

	Parameters:	installer_name (str [http://docs.python.org/library/functions.html#str]) – name of installer in question

	Returns:	priority of this installer if the os defines it, else None

	Return type:	number or None

	
get_name()

	Get the most specific name of the described operating system.

	Return type:	string

	
get_names()

	Get a list of names describing this operating system.

	Returns:	list of increasingly specific os names

	Return type:	list of strings

	
get_tuple()

	Get (name,version) tuple.

	Return type:	(str,str)

	
get_version()

	Get version of this operating system.

	Return type:	string

	
is_os()

	Return true if the current OS matches the one this object describes.

	Return type:	bool

	
class xylem.os_support.impl.OSSupport

	Bases: builtins.object

OSSupport manages the OS plugins and options such as override_os.

Can detect the current OS from the installed OS plugins or use the
override option. Moreover manages options such as disabling specific
plugins.

In order to set up, either call detect_os() or
override_os() and subsequently access it with
current_os()

	
detect_os()

	Detects and sets the current OS.

The first OS plugin that returns True for OS.is_os()
is the detected one. If multiple os plugins would accept the
current OS, a warning is printed to the user.

	Raises UnsupportedOSError:

		If no OS plugin accepts the current OS

	
get_current_os()

	Return OS object of current OS.

Detect current OS if not yet detected or overridden.

	Return type:	OS

	Raises UnsupportedOSError:

		If OS is not set and cannot be
detected.

	
get_default_installer_names()

	Return mapping of os name to default installer for all os.

	
get_os_plugin(name)

	Return os plugin object for given os name or None if not known.

	
get_os_plugin_names()

	Return list of known/configured os names.

	
get_os_plugins()

	Return list of is plugin objects.

	
override_os(os_tuple)

	Override to to (name,version) tuple.

A plugin with name must be installed.

	Raises UnsupportedOSError:

		if specified os name is not known

	
class xylem.os_support.impl.OverrideOS(os, version)

	Bases: xylem.os_support.impl.OS

Special OS class that acts as a proxy to another OS with fixed version.

OverrideOS takes another OS object and delegates all queries to
that, except for detection and version, which are fixed by the
OverrideOS.

	
get_default_installer_name()

	Return the delegate’s default installer.

	
get_installer_priority(installer_name)

	Return the delegate’s installer priority.

	
get_name()

	Return the delegate’s name.

	
get_names()

	Return the delegate’s names.

	
get_version()

	Return the saved version from setup.

	
is_os()

	Detection for OverrideOS is always True [http://docs.python.org/library/constants.html#True].

	
exception xylem.os_support.impl.UnsupportedOSError

	Bases: builtins.Exception

Operating system unsupported.

Detected operating system is not supported or could not be
identified.

	
xylem.os_support.impl.get_os_plugin_list()

	Return list of OS plugin objects unique by name.

Load the os plugin classes from entry points, instantiating objects
and ignoring duplicates (by os.name(), not entry point name).

	Returns:	list of the loaded plugin objects

	Raises InvalidPluginError:

		if one of the loaded plugins is invalid

	
xylem.os_support.impl.load_os_plugin(entry_point)

	Load OS plugin from entry point.

	Parameters:	entry_point – entry point object from pkg_resources

	Raises InvalidPluginError:

		if the plugin is not valid

xylem.os_support.os_detect module

Library for detecting the current OS, including detecting specific
Linux distributions.

	
class xylem.os_support.os_detect.Arch(release_file='/etc/arch-release')

	Bases: xylem.os_support.os_detect.OsDetector

Detect Arch Linux.

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.Cygwin

	Bases: xylem.os_support.os_detect.OsDetector

Detect Cygwin presence on Windows OS.

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.Fedora(release_file='/etc/redhat-release', issue_file='/etc/issue')

	Bases: xylem.os_support.os_detect.OsDetector

Detect Fedora OS.

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.FreeBSD(uname_file='/usr/bin/uname')

	Bases: xylem.os_support.os_detect.OsDetector

Detect FreeBSD OS.

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.Gentoo(release_file='/etc/gentoo-release')

	Bases: xylem.os_support.os_detect.OsDetector

Detect Gentoo OS.

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.LsbDetect(lsb_name, get_version_fn=None)

	Bases: xylem.os_support.os_detect.OsDetector

Generic detector for Debian, Ubuntu, and Mint

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.OSX(sw_vers_file='/usr/bin/sw_vers')

	Bases: xylem.os_support.os_detect.OsDetector

Detect OS X

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.OpenSuse(brand_file='/etc/SuSE-brand', release_file='/etc/SuSE-release')

	Bases: xylem.os_support.os_detect.OsDetector

Detect OpenSuse OS.

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.OsDetect(os_list=None)

	Bases: builtins.object

This class will iterate over registered classes to lookup the
active OS and version

	
add_detector(name, detector)

	Add detector to list of detectors used by this instance. detector will override any previous
detectors associated with name.

	Parameters:	
	name – OS name that detector matches

	detector – OsDetector instance

	
default_os_list = [('windows', <xylem.os_support.os_detect.Windows object at 0x7fb3ef5fd710>), ('ubuntu', <xylem.os_support.os_detect.LsbDetect object at 0x7fb3ef5fd7f0>), ('rhel', <xylem.os_support.os_detect.Rhel object at 0x7fb3ef5fdc18>), ('qnx', <xylem.os_support.os_detect.QNX object at 0x7fb3ef5fd240>), ('osx', <xylem.os_support.os_detect.OSX object at 0x7fb3ef5fdf98>), ('opensuse', <xylem.os_support.os_detect.OpenSuse object at 0x7fb3ef5fd3c8>), ('mint', <xylem.os_support.os_detect.LsbDetect object at 0x7fb3ef5fdcf8>), ('gentoo', <xylem.os_support.os_detect.Gentoo object at 0x7fb3ef5fdf28>), ('freebsd', <xylem.os_support.os_detect.FreeBSD object at 0x7fb3ef602630>), ('fedora', <xylem.os_support.os_detect.Fedora object at 0x7fb3ef602668>), ('debian', <xylem.os_support.os_detect.LsbDetect object at 0x7fb3ef602080>), ('cygwin', <xylem.os_support.os_detect.Cygwin object at 0x7fb3ef6020b8>), ('arch', <xylem.os_support.os_detect.Arch object at 0x7fb3ef602940>)]

	

	
detect_os(env=None)

	Detect operating system. Return value can be overridden by
the :env:`ROS_OS_OVERRIDE` environment variable.

	Parameters:	env – override os.environ

	Returns:	(os_name, os_version, os_codename), (str, str, str)

	Raises:	OsNotDetected if OS could not be detected

	
get_codename()

	

	
get_detector(name=None)

	Get detector used for specified OS name, or the detector for this OS if name is None.

	Raises:	KeyError

	
get_name()

	

	
get_version()

	

	
static register_default(os_name, os_detector)

	Register detector to be used with all future instances of
OsDetect. The new detector will have precedence over
any previously registered detectors associated with os_name.

	Parameters:	
	os_name – OS key associated with OS detector

	os_detector – OsDetector instance

	
class xylem.os_support.os_detect.OsDetector

	Bases: builtins.object

Generic API for detecting a specific OS.

	
get_codename()

	

	Returns:	codename for this OS. (ala Ubuntu Hardy Heron = “hardy”). If codenames are not available for this OS, return empty string.

	Raises:	OsNotDetected if called on incorrect OS.

	
get_version()

	

	Returns:	standardized version for this OS. (ala Ubuntu Hardy Heron = “8.04”)

	Raises:	OsNotDetected if called on incorrect OS.

	
is_os()

	

	Returns:	if the specific OS which this class is designed to
detect is present. Only one version of this class should
return for any version.

	
exception xylem.os_support.os_detect.OsNotDetected

	Bases: builtins.Exception

Exception to indicate failure to detect operating system.

	
class xylem.os_support.os_detect.QNX(uname_file='/bin/uname')

	Bases: xylem.os_support.os_detect.OsDetector

Detect QNX realtime OS.
@author: Isaac Saito

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.Rhel(release_file='/etc/redhat-release')

	Bases: xylem.os_support.os_detect.Fedora

Detect Redhat OS.

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.os_detect.Windows

	Bases: xylem.os_support.os_detect.OsDetector

Detect Windows OS.

	
get_codename()

	

	
get_version()

	

	
is_os()

	

	
xylem.os_support.os_detect.read_issue(filename='/etc/issue')

	

	Returns:	list of strings in issue file, or None if issue file cannot be read/split

	
xylem.os_support.os_detect.uname_get_machine()

	Linux: wrapper around uname to determine if OS is 64-bit

xylem.os_support.plugins module

	
class xylem.os_support.plugins.Debian

	Bases: xylem.os_support.plugins.OSBase

	
class xylem.os_support.plugins.OSBase

	Bases: xylem.os_support.impl.OS

OS plugin base class for builtin plugins.

This is an internal base class used for the plugins shipped with
xylem, which use the os_detect module. In general,
external plugins would want to derive from
OS directly.

Derived classes should fill in the following member variables:

	Variables:	
	names (list(str)) – list of names

	detect – Detector object supporting is_os(),
get_version() and get_codename()

	use_codename (bool [http://docs.python.org/library/functions.html#bool]) – boolean to decide if numbered version or
codename should be used

	installer_priorities (dict [http://docs.python.org/library/stdtypes.html#dict]) – dict of installer_name => priority

	default_installer_name (str [http://docs.python.org/library/functions.html#str]) – name of the desired default
installer

	
get_default_installer_name()

	

	
get_installer_priority(installer_name)

	

	
get_name()

	

	
get_names()

	

	
get_version()

	

	
is_os()

	

	
class xylem.os_support.plugins.OSX

	Bases: xylem.os_support.plugins.OSBase

	
class xylem.os_support.plugins.Ubuntu

	Bases: xylem.os_support.plugins.Debian

Module contents

Module to manage OS plugins and their use for OS detection.

	
class xylem.os_support.OS

	Bases: builtins.object

Abstract OS plugin base class.

OS plugins should define entry points as classes derived from this.

Operating systems are described by a list of increasingly specific
names, where the most specific of those is referred to as the name
of the operating system. The description furthermore includes a
operating system version, which can be a version number string or
code name.

Operating systems can name their default installer and furthermore
list additional applicable installer names, each with a number as
priority (higher number take precedence).

	
get_default_installer_name()

	Get name of default installer as described by OS plugin.

	Return type:	str

	
get_installer_priority(installer_name)

	Get priority of installer as described by OS plugin.

	Parameters:	installer_name (str [http://docs.python.org/library/functions.html#str]) – name of installer in question

	Returns:	priority of this installer if the os defines it, else None

	Return type:	number or None

	
get_name()

	Get the most specific name of the described operating system.

	Return type:	string

	
get_names()

	Get a list of names describing this operating system.

	Returns:	list of increasingly specific os names

	Return type:	list of strings

	
get_tuple()

	Get (name,version) tuple.

	Return type:	(str,str)

	
get_version()

	Get version of this operating system.

	Return type:	string

	
is_os()

	Return true if the current OS matches the one this object describes.

	Return type:	bool

	
class xylem.os_support.OSSupport

	Bases: builtins.object

OSSupport manages the OS plugins and options such as override_os.

Can detect the current OS from the installed OS plugins or use the
override option. Moreover manages options such as disabling specific
plugins.

In order to set up, either call detect_os() or
override_os() and subsequently access it with
current_os()

	
detect_os()

	Detects and sets the current OS.

The first OS plugin that returns True for OS.is_os()
is the detected one. If multiple os plugins would accept the
current OS, a warning is printed to the user.

	Raises UnsupportedOSError:

		If no OS plugin accepts the current OS

	
get_current_os()

	Return OS object of current OS.

Detect current OS if not yet detected or overridden.

	Return type:	OS

	Raises UnsupportedOSError:

		If OS is not set and cannot be
detected.

	
get_default_installer_names()

	Return mapping of os name to default installer for all os.

	
get_os_plugin(name)

	Return os plugin object for given os name or None if not known.

	
get_os_plugin_names()

	Return list of known/configured os names.

	
get_os_plugins()

	Return list of is plugin objects.

	
override_os(os_tuple)

	Override to to (name,version) tuple.

A plugin with name must be installed.

	Raises UnsupportedOSError:

		if specified os name is not known

	
exception xylem.os_support.UnsupportedOSError

	Bases: builtins.Exception

Operating system unsupported.

Detected operating system is not supported or could not be
identified.

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem

 	xylem package

xylem.sources package

Submodules

xylem.sources.database module

	
class xylem.sources.database.RulesDatabase(sources_context)

	Bases: builtins.object

	
init_from_sources()

	

	
keys(installer_context)

	Return list of keys defined for current os/version.

	
load_from_cache()

	

	
load_from_source()

	

	
lookup(xylem_key, installer_context)

	Return rules for xylem key in current os.

	
save_to_cache()

	

	
update()

	

	
verify_unique_ids()

	

	
class xylem.sources.database.RulesSource(spec, arguments, origin, sources_context)

	Bases: builtins.object

	
cache_file_path()

	

	
clear_cache()

	Remove cache file.

	Raises OSError:	if cache file cannot be removed

	
is_cache_available()

	

	
is_cache_outdated()

	

	
keys(installer_context)

	Return list of keys defined for current os/version.

	
load_from_cache()

	

	
load_from_source()

	

	
lookup(xylem_key, installer_context)

	

	
save_to_cache()

	

	
unique_id()

	

xylem.sources.impl module

	
class xylem.sources.impl.SourcesContext(prefix=None, xylem_dir=None, spec_plugins=None)

	Bases: builtins.object

	
cache_dir_exists()

	

	
ensure_cache_dir()

	

	
get_spec(spec_name)

	

	
is_default_dirs()

	

	
setup_paths(prefix=None, xylem_dir=None)

	

	
sources_dir_exists()

	

	
exception xylem.sources.impl.UnknownSpecError

	Bases: builtins.Exception

	
xylem.sources.impl.cache_dir_from_prefix(prefix)

	

	
xylem.sources.impl.cache_dir_from_xylem_dir(xylem_dir)

	

	
xylem.sources.impl.get_default_source_descriptions()

	Return the list of default source urls.

	Returns:	lists of source urls keyed by spec type

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	
xylem.sources.impl.get_source_descriptions(sources_dir)

	Return a list of source urls.

	Returns:	lists of source urls keyed by spec, or None if no configs
found

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	
xylem.sources.impl.load_sources_from_path(path)

	Return a list of source urls from a given directory of source lists.

Only files which have the .yaml extension are processed, other
files, hidden files, and directories are ignored.

	Parameters:	path (str [http://docs.python.org/library/functions.html#str]) – directory containing source list files

	Returns:	lists of source urls keyed by spec type

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	
xylem.sources.impl.parse_source_descriptions(data, file_path='<string>')

	Parse a YAML string as source descriptions.

If parsing failes an error message is printed to console and an
empty list is returned.

	Parameters:	
	data (str [http://docs.python.org/library/functions.html#str]) – string containing YAML representation of source
descriptions

	file_path (str [http://docs.python.org/library/functions.html#str]) – name of the file whose contents data
contains

	Returns:	tuple of file_path and parsed source descriptions

	Return type:	tuple(str, list)

	
xylem.sources.impl.parse_source_file(file_path)

	Parse a given list file and returns a list of source urls.

	Parameters:	file_path (str [http://docs.python.org/library/functions.html#str]) – path to file containing a list of source urls

	Returns:	lists of source urls keyed by spec type

	Return type:	dict`(:py:obj:`str: list`(:py:obj:`str))

	
xylem.sources.impl.sources_dir_from_prefix(prefix)

	

	
xylem.sources.impl.sources_dir_from_xylem_dir(xylem_dir)

	

	
xylem.sources.impl.verify_source_description(descr)

	Verify that a source description has valid structure.

	Parameters:	descr_list (dict [http://docs.python.org/library/stdtypes.html#dict]) – source description

	Raises ValueError:

		if structure of source description is invalid

	
xylem.sources.impl.verify_source_description_list(descr_list)

	Verify that a source description list has valid structure.

	Parameters:	descr_list (list [http://docs.python.org/library/functions.html#list]) – list of source descriptions

	Raises ValueError:

		if structure of source descriptions is invalid

xylem.sources.rules_dict module

Module contents

	
class xylem.sources.SourcesContext(prefix=None, xylem_dir=None, spec_plugins=None)

	Bases: builtins.object

	
cache_dir_exists()

	

	
ensure_cache_dir()

	

	
get_spec(spec_name)

	

	
is_default_dirs()

	

	
setup_paths(prefix=None, xylem_dir=None)

	

	
sources_dir_exists()

	

	
class xylem.sources.RulesDatabase(sources_context)

	Bases: builtins.object

	
init_from_sources()

	

	
keys(installer_context)

	Return list of keys defined for current os/version.

	
load_from_cache()

	

	
load_from_source()

	

	
lookup(xylem_key, installer_context)

	Return rules for xylem key in current os.

	
save_to_cache()

	

	
update()

	

	
verify_unique_ids()

	

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	xylem 0.1.0 documentation

 	xylem

 	xylem package

xylem.specs package

Submodules

xylem.specs.impl module

	
class xylem.specs.impl.Spec

	Bases: xylem.plugin_utils.PluginBase

Spec plugin abstract base class.

Spec plugins are stateless classes such that all functions get are
their needed parameters passed on every invocation.

The data and arguments (e.g. url for the ‘rules’ spec plugin)
are managed by the sources.database.RulesSource class in the
sources.database.RulesDatabase.

	
is_data_outdated(data, arguments, data_load_time)

	

	
keys(data, installer_context)

	Return list of keys defined for current os/version.

	
load_data(arguments)

	

	
lookup(data, xylem_key, installer_context)

	

	
name

	

	
unique_id(arguments)

	

	
verify_arguments(arguments)

	

	
verify_data(data, arguments)

	

	
version

	

	
xylem.specs.impl.get_spec_plugin_list()

	Return list of spec plugin objects unique by name.

See get_plugin_list()

	
xylem.specs.impl.verify_spec_name(spec_name)

	Verify that a spec_name is valid spec name.

	Parameters:	spec_name (str [http://docs.python.org/library/functions.html#str]) – spec name

	Raises ValueError:

		if spec name is invalid

xylem.specs.rules module

Module contents

	
xylem.specs.get_spec_plugin_list()

	Return list of spec plugin objects unique by name.

See get_plugin_list()

	
exception xylem.specs.SpecParsingError(msg, related_snippet=None)

	Bases: builtins.ValueError

Raised when an invalid spec element is encountered while parsing.

	
xylem.specs.verify_spec_name(spec_name)

	Verify that a spec_name is valid spec name.

	Parameters:	spec_name (str [http://docs.python.org/library/functions.html#str]) – spec name

	Raises ValueError:

		if spec name is invalid

	
class xylem.specs.Spec

	Bases: xylem.plugin_utils.PluginBase

Spec plugin abstract base class.

Spec plugins are stateless classes such that all functions get are
their needed parameters passed on every invocation.

The data and arguments (e.g. url for the ‘rules’ spec plugin)
are managed by the sources.database.RulesSource class in the
sources.database.RulesDatabase.

	
is_data_outdated(data, arguments, data_load_time)

	

	
keys(data, installer_context)

	Return list of keys defined for current os/version.

	
load_data(arguments)

	

	
lookup(data, xylem_key, installer_context)

	

	
name

	

	
unique_id(arguments)

	

	
verify_arguments(arguments)

	

	
verify_data(data, arguments)

	

	
version

	

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	xylem 0.1.0 documentation

 Python Module Index

 x

 			

 		
 x	

 	[image: -]
 	
 xylem	

 	
 	
 xylem.commands	

 	
 	
 xylem.commands.main	

 	
 	
 xylem.commands.resolve	

 	
 	
 xylem.commands.update	

 	
 	
 xylem.exception	

 	
 	
 xylem.installers	

 	
 	
 xylem.installers.impl	

 	
 	
 xylem.installers.package_manager_installer	

 	
 	
 xylem.installers.plugins	

 	
 	
 xylem.installers.plugins.fake	

 	
 	
 xylem.installers.plugins.homebrew	

 	
 	
 xylem.installers.plugins.macports	

 	
 	
 xylem.installers.plugins.pip	

 	
 	
 xylem.load_url	

 	
 	
 xylem.log_utils	

 	
 	
 xylem.os_support	

 	
 	
 xylem.os_support.impl	

 	
 	
 xylem.os_support.os_detect	

 	
 	
 xylem.os_support.plugins	

 	
 	
 xylem.plugin_utils	

 	
 	
 xylem.resolve	

 	
 	
 xylem.sources	

 	
 	
 xylem.sources.database	

 	
 	
 xylem.sources.impl	

 	
 	
 xylem.specs	

 	
 	
 xylem.specs.impl	

 	
 	
 xylem.terminal_color	

 	
 	
 xylem.text_utils	

 	
 	
 xylem.update	

 	
 	
 xylem.util	

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	xylem 0.1.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	

 	add_detector() (xylem.os_support.os_detect.OsDetect method)

 	add_global_arguments() (in module xylem.util)

 	

 	ansi() (in module xylem.terminal_color)

 	Arch (class in xylem.os_support.os_detect)

C

 	

 	cache_dir_exists() (xylem.sources.impl.SourcesContext method)

 	

 	(xylem.sources.SourcesContext method)

 	cache_dir_from_prefix() (in module xylem.sources.impl)

 	cache_dir_from_xylem_dir() (in module xylem.sources.impl)

 	cache_file_path() (xylem.sources.database.RulesSource method)

 	change_directory (class in xylem.util)

 	clear_cache() (xylem.sources.database.RulesSource method)

 	

 	ColorTemplate (class in xylem.terminal_color)

 	create_subparsers() (in module xylem.commands.main)

 	create_temporary_directory() (in module xylem.util)

 	custom_exception_handler() (in module xylem.util)

 	Cygwin (class in xylem.os_support.os_detect)

D

 	

 	Debian (class in xylem.os_support.plugins)

 	debug() (in module xylem.log_utils)

 	default_os_list (xylem.os_support.os_detect.OsDetect attribute)

 	delimiter (xylem.terminal_color.ColorTemplate attribute)

 	detect_fn() (in module xylem.installers.plugins.fake)

 	

 	detect_os() (xylem.os_support.impl.OSSupport method)

 	

 	(xylem.os_support.OSSupport method)

 	(xylem.os_support.os_detect.OsDetect method)

 	disable_ANSI_colors() (in module xylem.terminal_color)

 	DownloadFailure

 	dump_yaml() (in module xylem.util)

E

 	

 	enable_ANSI_colors() (in module xylem.terminal_color)

 	enable_debug() (in module xylem.log_utils)

 	enable_verbose() (in module xylem.log_utils)

 	

 	ensure_cache_dir() (xylem.sources.impl.SourcesContext method)

 	

 	(xylem.sources.SourcesContext method)

 	error() (in module xylem.log_utils)

F

 	

 	FakeInstaller (class in xylem.installers.plugins.fake)

 	Fedora (class in xylem.os_support.os_detect)

 	fixme_detect() (in module xylem.installers.plugins.homebrew)

 	

 	(in module xylem.installers.plugins.macports)

 	

 	fmt() (in module xylem.terminal_color)

 	FreeBSD (class in xylem.os_support.os_detect)

G

 	

 	Gentoo (class in xylem.os_support.os_detect)

 	get_codename() (xylem.os_support.os_detect.Arch method)

 	

 	(xylem.os_support.os_detect.Cygwin method)

 	(xylem.os_support.os_detect.Fedora method)

 	(xylem.os_support.os_detect.FreeBSD method)

 	(xylem.os_support.os_detect.Gentoo method)

 	(xylem.os_support.os_detect.LsbDetect method)

 	(xylem.os_support.os_detect.OSX method)

 	(xylem.os_support.os_detect.OpenSuse method)

 	(xylem.os_support.os_detect.OsDetect method)

 	(xylem.os_support.os_detect.OsDetector method)

 	(xylem.os_support.os_detect.QNX method)

 	(xylem.os_support.os_detect.Rhel method)

 	(xylem.os_support.os_detect.Windows method)

 	get_current_os() (xylem.os_support.impl.OSSupport method)

 	

 	(xylem.os_support.OSSupport method)

 	get_default_installer_name() (xylem.installers.impl.InstallerContext method)

 	

 	(xylem.installers.InstallerContext method)

 	(xylem.os_support.OS method)

 	(xylem.os_support.impl.OS method)

 	(xylem.os_support.impl.OverrideOS method)

 	(xylem.os_support.plugins.OSBase method)

 	get_default_installer_names() (xylem.os_support.impl.OSSupport method)

 	

 	(xylem.os_support.OSSupport method)

 	get_default_source_descriptions() (in module xylem.sources.impl)

 	get_depends() (xylem.installers.impl.Installer method)

 	

 	(xylem.installers.Installer method)

 	(xylem.installers.package_manager_installer.PackageManagerInstaller method)

 	get_detector() (xylem.os_support.os_detect.OsDetect method)

 	get_install_command() (xylem.installers.impl.Installer method)

 	

 	(xylem.installers.Installer method)

 	(xylem.installers.plugins.fake.FakeInstaller method)

 	(xylem.installers.plugins.homebrew.HomebrewInstaller method)

 	(xylem.installers.plugins.macports.MacportsInstaller method)

 	(xylem.installers.plugins.pip.PipInstaller method)

 	get_installer() (xylem.installers.impl.InstallerContext method)

 	

 	(xylem.installers.InstallerContext method)

 	get_installer_filename() (in module xylem.installers.plugins.fake)

 	get_installer_names() (xylem.installers.impl.InstallerContext method)

 	

 	(xylem.installers.InstallerContext method)

 	get_installer_plugin_list() (in module xylem.installers.impl)

 	get_installer_priority() (xylem.installers.impl.InstallerContext method)

 	

 	(xylem.installers.InstallerContext method)

 	(xylem.os_support.OS method)

 	(xylem.os_support.impl.OS method)

 	(xylem.os_support.impl.OverrideOS method)

 	(xylem.os_support.plugins.OSBase method)

 	get_name() (xylem.installers.impl.Installer static method)

 	

 	(xylem.installers.Installer static method)

 	(xylem.installers.plugins.fake.FakeInstaller static method)

 	(xylem.installers.plugins.homebrew.HomebrewInstaller static method)

 	(xylem.installers.plugins.macports.MacportsInstaller static method)

 	(xylem.installers.plugins.pip.PipInstaller static method)

 	(xylem.os_support.OS method)

 	(xylem.os_support.impl.OS method)

 	(xylem.os_support.impl.OverrideOS method)

 	(xylem.os_support.os_detect.OsDetect method)

 	(xylem.os_support.plugins.OSBase method)

 	

 	get_names() (xylem.os_support.impl.OS method)

 	

 	(xylem.os_support.OS method)

 	(xylem.os_support.impl.OverrideOS method)

 	(xylem.os_support.plugins.OSBase method)

 	get_os_plugin() (xylem.os_support.impl.OSSupport method)

 	

 	(xylem.os_support.OSSupport method)

 	get_os_plugin_list() (in module xylem.os_support.impl)

 	get_os_plugin_names() (xylem.os_support.impl.OSSupport method)

 	

 	(xylem.os_support.OSSupport method)

 	get_os_plugins() (xylem.os_support.impl.OSSupport method)

 	

 	(xylem.os_support.OSSupport method)

 	get_os_string() (xylem.installers.impl.InstallerContext method)

 	

 	(xylem.installers.InstallerContext method)

 	get_os_tuple() (xylem.installers.impl.InstallerContext method)

 	

 	(xylem.installers.InstallerContext method)

 	get_packages_to_install() (xylem.installers.package_manager_installer.PackageManagerInstaller method)

 	get_plugin_list() (in module xylem.plugin_utils)

 	get_priority_for_os() (xylem.installers.impl.Installer method)

 	

 	(xylem.installers.Installer method)

 	(xylem.installers.plugins.pip.PipInstaller method)

 	get_source_descriptions() (in module xylem.sources.impl)

 	get_spec() (xylem.sources.impl.SourcesContext method)

 	

 	(xylem.sources.SourcesContext method)

 	get_spec_plugin_list() (in module xylem.specs)

 	

 	(in module xylem.specs.impl)

 	get_tuple() (xylem.os_support.impl.OS method)

 	

 	(xylem.os_support.OS method)

 	get_version() (xylem.os_support.impl.OS method)

 	

 	(xylem.os_support.OS method)

 	(xylem.os_support.impl.OverrideOS method)

 	(xylem.os_support.os_detect.Arch method)

 	(xylem.os_support.os_detect.Cygwin method)

 	(xylem.os_support.os_detect.Fedora method)

 	(xylem.os_support.os_detect.FreeBSD method)

 	(xylem.os_support.os_detect.Gentoo method)

 	(xylem.os_support.os_detect.LsbDetect method)

 	(xylem.os_support.os_detect.OSX method)

 	(xylem.os_support.os_detect.OpenSuse method)

 	(xylem.os_support.os_detect.OsDetect method)

 	(xylem.os_support.os_detect.OsDetector method)

 	(xylem.os_support.os_detect.QNX method)

 	(xylem.os_support.os_detect.Rhel method)

 	(xylem.os_support.os_detect.Windows method)

 	(xylem.os_support.plugins.OSBase method)

H

 	

 	handle_global_arguments() (in module xylem.util)

 	

 	HomebrewInstaller (class in xylem.installers.plugins.homebrew)

I

 	

 	info() (in module xylem.log_utils)

 	init_from_sources() (xylem.sources.database.RulesDatabase method)

 	

 	(xylem.sources.RulesDatabase method)

 	Installer (class in xylem.installers)

 	

 	(class in xylem.installers.impl)

 	InstallerContext (class in xylem.installers)

 	

 	(class in xylem.installers.impl)

 	InstallerNotAvailable

 	InvalidDataError

 	InvalidPluginError

 	is_cache_available() (xylem.sources.database.RulesSource method)

 	

 	is_cache_outdated() (xylem.sources.database.RulesSource method)

 	is_data_outdated() (xylem.specs.impl.Spec method)

 	

 	(xylem.specs.Spec method)

 	is_debug() (in module xylem.log_utils)

 	is_default_dirs() (xylem.sources.impl.SourcesContext method)

 	

 	(xylem.sources.SourcesContext method)

 	is_installed() (xylem.installers.impl.Installer method)

 	

 	(xylem.installers.Installer method)

 	(xylem.installers.package_manager_installer.PackageManagerInstaller method)

 	is_os() (xylem.os_support.impl.OS method)

 	

 	(xylem.os_support.OS method)

 	(xylem.os_support.impl.OverrideOS method)

 	(xylem.os_support.os_detect.Arch method)

 	(xylem.os_support.os_detect.Cygwin method)

 	(xylem.os_support.os_detect.Fedora method)

 	(xylem.os_support.os_detect.FreeBSD method)

 	(xylem.os_support.os_detect.Gentoo method)

 	(xylem.os_support.os_detect.LsbDetect method)

 	(xylem.os_support.os_detect.OSX method)

 	(xylem.os_support.os_detect.OpenSuse method)

 	(xylem.os_support.os_detect.OsDetector method)

 	(xylem.os_support.os_detect.QNX method)

 	(xylem.os_support.os_detect.Rhel method)

 	(xylem.os_support.os_detect.Windows method)

 	(xylem.os_support.plugins.OSBase method)

 	is_pip_installed() (in module xylem.installers.plugins.pip)

 	is_verbose() (in module xylem.log_utils)

K

 	

 	keys() (xylem.sources.database.RulesDatabase method)

 	

 	(xylem.sources.RulesDatabase method)

 	(xylem.sources.database.RulesSource method)

 	(xylem.specs.Spec method)

 	(xylem.specs.impl.Spec method)

L

 	

 	list_commands() (in module xylem.commands.main)

 	load_command_description() (in module xylem.commands.main)

 	load_data() (xylem.specs.impl.Spec method)

 	

 	(xylem.specs.Spec method)

 	load_from_cache() (xylem.sources.database.RulesDatabase method)

 	

 	(xylem.sources.RulesDatabase method)

 	(xylem.sources.database.RulesSource method)

 	load_from_source() (xylem.sources.database.RulesDatabase method)

 	

 	(xylem.sources.RulesDatabase method)

 	(xylem.sources.database.RulesSource method)

 	load_installer_plugin() (in module xylem.installers.impl)

 	

 	load_os_plugin() (in module xylem.os_support.impl)

 	load_sources_from_path() (in module xylem.sources.impl)

 	load_url() (in module xylem.load_url)

 	load_yaml() (in module xylem.util)

 	lookup() (xylem.sources.database.RulesDatabase method)

 	

 	(xylem.sources.RulesDatabase method)

 	(xylem.sources.database.RulesSource method)

 	(xylem.specs.Spec method)

 	(xylem.specs.impl.Spec method)

 	LsbDetect (class in xylem.os_support.os_detect)

M

 	

 	MacportsInstaller (class in xylem.installers.plugins.macports)

 	

 	main() (in module xylem.commands.main)

 	

 	(in module xylem.commands.resolve)

 	(in module xylem.commands.update)

N

 	

 	name (xylem.plugin_utils.PluginBase attribute)

 	

 	(xylem.specs.Spec attribute)

 	(xylem.specs.impl.Spec attribute)

O

 	

 	OpenSuse (class in xylem.os_support.os_detect)

 	OS (class in xylem.os_support)

 	

 	(class in xylem.os_support.impl)

 	OSBase (class in xylem.os_support.plugins)

 	OsDetect (class in xylem.os_support.os_detect)

 	OsDetector (class in xylem.os_support.os_detect)

 	

 	OsNotDetected

 	OSSupport (class in xylem.os_support)

 	

 	(class in xylem.os_support.impl)

 	OSX (class in xylem.os_support.os_detect)

 	

 	(class in xylem.os_support.plugins)

 	override_os() (xylem.os_support.impl.OSSupport method)

 	

 	(xylem.os_support.OSSupport method)

 	OverrideOS (class in xylem.os_support.impl)

P

 	

 	PackageManagerInstaller (class in xylem.installers.package_manager_installer)

 	parse_os_tuple() (in module xylem.commands.resolve)

 	parse_source_descriptions() (in module xylem.sources.impl)

 	parse_source_file() (in module xylem.sources.impl)

 	pattern (xylem.terminal_color.ColorTemplate attribute)

 	pdb_hook() (in module xylem.util)

 	pip_detect() (in module xylem.installers.plugins.pip)

 	

 	PipInstaller (class in xylem.installers.plugins.pip)

 	PluginBase (class in xylem.plugin_utils)

 	prepare_arguments() (in module xylem.commands.resolve)

 	

 	(in module xylem.commands.update)

 	print_exc() (in module xylem.util)

 	print_usage() (in module xylem.commands.main)

 	
 Python Enhancement Proposals

 	

 	PEP 257

 	PEP 8

 	PEP 8
#naming-conventions

Q

 	

 	QNX (class in xylem.os_support.os_detect)

R

 	

 	raise_from() (in module xylem.util)

 	read_issue() (in module xylem.os_support.os_detect)

 	read_stdout() (in module xylem.util)

 	redirected_stdio (class in xylem.util)

 	register_default() (xylem.os_support.os_detect.OsDetect static method)

 	

 	resolve() (in module xylem.resolve)

 	

 	(xylem.installers.Installer method)

 	(xylem.installers.impl.Installer method)

 	(xylem.installers.package_manager_installer.PackageManagerInstaller method)

 	Rhel (class in xylem.os_support.os_detect)

 	RulesDatabase (class in xylem.sources)

 	

 	(class in xylem.sources.database)

 	RulesSource (class in xylem.sources.database)

S

 	

 	sanitize() (in module xylem.terminal_color)

 	save_to_cache() (xylem.sources.database.RulesDatabase method)

 	

 	(xylem.sources.RulesDatabase method)

 	(xylem.sources.database.RulesSource method)

 	set_os_override() (xylem.installers.impl.InstallerContext method)

 	

 	(xylem.installers.InstallerContext method)

 	setup_installers() (xylem.installers.impl.InstallerContext method)

 	

 	(xylem.installers.InstallerContext method)

 	setup_paths() (xylem.sources.impl.SourcesContext method)

 	

 	(xylem.sources.SourcesContext method)

 	sources_dir_exists() (xylem.sources.impl.SourcesContext method)

 	

 	(xylem.sources.SourcesContext method)

 	

 	sources_dir_from_prefix() (in module xylem.sources.impl)

 	sources_dir_from_xylem_dir() (in module xylem.sources.impl)

 	SourcesContext (class in xylem.sources)

 	

 	(class in xylem.sources.impl)

 	Spec (class in xylem.specs)

 	

 	(class in xylem.specs.impl)

 	SpecParsingError

T

 	

 	temporary_directory (class in xylem.util)

 	to_bytes() (in module xylem.text_utils)

 	

 	to_str() (in module xylem.text_utils)

U

 	

 	Ubuntu (class in xylem.os_support.plugins)

 	uname_get_machine() (in module xylem.os_support.os_detect)

 	unique_id() (xylem.sources.database.RulesSource method)

 	

 	(xylem.specs.Spec method)

 	(xylem.specs.impl.Spec method)

 	

 	UnknownSpecError

 	UnsupportedOSError, [1]

 	update() (in module xylem.update), [1]

 	

 	(xylem.sources.RulesDatabase method)

 	(xylem.sources.database.RulesDatabase method)

V

 	

 	verify_arguments() (xylem.specs.impl.Spec method)

 	

 	(xylem.specs.Spec method)

 	verify_data() (xylem.specs.impl.Spec method)

 	

 	(xylem.specs.Spec method)

 	verify_plugin_class() (in module xylem.plugin_utils)

 	verify_plugin_definition() (in module xylem.plugin_utils)

 	verify_plugin_description() (in module xylem.plugin_utils)

 	verify_plugin_name() (in module xylem.plugin_utils)

 	

 	verify_source_description() (in module xylem.sources.impl)

 	verify_source_description_list() (in module xylem.sources.impl)

 	verify_spec_name() (in module xylem.specs)

 	

 	(in module xylem.specs.impl)

 	verify_unique_ids() (xylem.sources.database.RulesDatabase method)

 	

 	(xylem.sources.RulesDatabase method)

 	version (xylem.specs.impl.Spec attribute)

 	

 	(xylem.specs.Spec attribute)

W

 	

 	warning() (in module xylem.log_utils)

 	

 	Windows (class in xylem.os_support.os_detect)

X

 	

 	xylem (module), [1]

 	xylem.commands (module)

 	xylem.commands.main (module)

 	xylem.commands.resolve (module)

 	xylem.commands.update (module)

 	xylem.exception (module)

 	xylem.installers (module)

 	xylem.installers.impl (module)

 	xylem.installers.package_manager_installer (module)

 	xylem.installers.plugins (module)

 	xylem.installers.plugins.fake (module)

 	xylem.installers.plugins.homebrew (module)

 	xylem.installers.plugins.macports (module)

 	xylem.installers.plugins.pip (module)

 	xylem.load_url (module)

 	xylem.log_utils (module)

 	

 	xylem.os_support (module)

 	xylem.os_support.impl (module)

 	xylem.os_support.os_detect (module)

 	xylem.os_support.plugins (module)

 	xylem.plugin_utils (module)

 	xylem.resolve (module)

 	xylem.sources (module)

 	xylem.sources.database (module)

 	xylem.sources.impl (module)

 	xylem.specs (module)

 	xylem.specs.impl (module)

 	xylem.terminal_color (module)

 	xylem.text_utils (module)

 	xylem.update (module), [1]

 	xylem.util (module)

 Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

 _static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/os_support.png
os_detect

ossupport

os

plugins

0s:08
o plugin_lst - ist0S)

get_os_plugins()
get_os_plugin_name()

et default installer_names()
override_os(os_tuple)
detect_os()

get_current_os() :0S

get_name()
get_names()
get version)
get_tuple()

get_installer_priorty(installer_name) : float
staller_name()

get_default|
is_os()

| —

OsBase

Lo

Debain

osx

T

Override0s

Ubuntu

_static/down-pressed.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		xylem 0.1.0 documentation »

 All modules for which code is available

		xylem.commands.main

		xylem.commands.resolve

		xylem.commands.update

		xylem.exception

		xylem.installers

		xylem.installers.impl

		xylem.installers.package_manager_installer

		xylem.installers.plugins.fake

		xylem.installers.plugins.homebrew

		xylem.installers.plugins.macports

		xylem.installers.plugins.pip

		xylem.load_url

		xylem.log_utils

		xylem.os_support

		xylem.os_support.impl

		xylem.os_support.os_detect

		xylem.os_support.plugins

		xylem.plugin_utils

		xylem.resolve

		xylem.sources

		xylem.sources.database

		xylem.sources.impl

		xylem.specs

		xylem.specs.impl

		xylem.terminal_color

		xylem.text_utils

		xylem.update

		xylem.util

 © Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

_images/installers.png
installers

InstallerContext

Installer

PackageManagerinstaller

os_support
installer_plugins
installors
installer_priorios

sot_os_override(os_tuple)
get_os_ tuplel)
get_os_sting()

gt instaler(name)
setup_installers()
get_defaut insaller_name()

get_instalor_namos()
get_installer_pririty(name)

get_name()
get_prority._for_os(os_name, 0s_version)

get_depends(installer_rules)
resolve(installer_rules)

is_instalied(resolved)
get_install_commandiresolved)

plugins

k)

Apt

Pip

Homebrew

Macports

0s_detect
osSupport os
got_os_plugins) get_name()
oo shwn) get_names()
got_defaull instaler_names get_versionl)
override_os(os_tuple) [* 1 get_tuple()

dotect_os()
get_current_os()

get installer_prioriy(installer_name)
get_default_installer_name()
is_os()

_images/sources.png
sources

SourcesContext Gatabase
spec_phugins
sources dr RulesDatabase RulesSource
cache.dr
Sources_contoxt spec Spec
get_spec(rame) sources - Fs(RulesSource) arguments
orign
sotup_pathsylom_di, profe) int_fram_sources() sources context
Sty L i data

sources dir_exisis)
cache_dir_osis()
snsure_cache_dir)
is_dofault_dirs()

load.from sources()
load.from_cachal)
save_to_cache()

¥

update()
lookup(xylem_key,installr_context)
Koys(nstalor_context)

time_data loaded

load_from_source()
load_from_cachal)
save_to_cache()

load_from _sources()
load_from_cachal)
save_to_cache()

lookup(xylem_key. installr_context)
Keys(insiallor_context)

specs

Spec

unique_id(arguments)
load_data(argumonts)
verity_argumens(arguments)

verity_data(data, arguments)
is_data_outdated|data, arguments, data_load_time)
lookup(xylem_koy, data, nstaller_contex)
Koys(data, installer_context)

i

RulesSpec

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		xylem 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Open Source Robotics Foundation, Inc..
 Created using Sphinx 1.2.2.

_static/minus.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

